1/3 AD-A122 882 LIMNOLOGICAL INVESTIGATIONS: LAKE KODCANUSA MONTANA PART 1 PRE-IMPOUNDMEN..(U) COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH T J BONDE ET AL. OCT 82 UNCLASSIFIED CRREL-SR-82-21 F/G 8/8 NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD A 1 2 2 8 8 2

Special Report 82-21

October 1982

US Army Corps of Engineers

Cold Regions Research & Engineering Laboratory

Limnological investigations: Lake Koocanusa, Montana

Part 1: Pre-impoundment Study, 1967 - 1972

Thomas J.H. Bonde and Ronald M. Bush

Prepared in cooperation with
U.S. ARMY ENGINEER DISTRICT, SEATTLE
Approved for public release; distribution unlimited.

82 12 28 165

FOREWORD

The Kootenai River basin, Libby Dam and the resulting Lake Koocanusa, have been of interest to CRREL investigators since the mid-1970's. We have focused on a number of cold regions remote sensing, water quality, and limnological problems. Of particular interest are those associated with winter ice cover, spring snowmelt runoff, and low temperature chemical reactions in sediments and in the water column. Since CRREL and the Seattle District have conducted a number of short and long term studies on the Kootenai River and Lake Koocanusa, we considered it appropriate to make the results of those investigations readily available in a series of reports. Therefore, we are issuing these results in the CRREL Special Report series under the overall title Limnological investigations: Lake Koocanusa, Montana.

- Part 1: Pre-impoundment study: 1967-1972, with appendix, Basic data (CRREL Special Report 82-21)
- Part 2: Environmental analyses in the Kootenai River region, Montana (Reprint of CRREL Special Report 76-13)
- Part 3: Basic data, post-impoundment: 1972-1978
- Part 4: Factors controlling primary productivity (CRREL Special Report 82-15)
- Part 5: Phosphorus chemistry or sediments (CRREL Special Report 81-15)

Cover: Libby Dam and Lake Koocanusa, Montana, 1975. (Photograph by U.S. Army Engineer District, Seattle.)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
Special Report 82-21	AD-A122-882			
4. TITLE (and Subtitio)	My nie Color	5. TYPE OF REPORT & PERIOD COVERED		
LIMNOLOGICAL INVESTIGATIONS: LAKE KOOCANUSA,				
MONTANA Part 1: Pre-impoundment Study, 1967-1972		6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)		
Thomas J.H. Bonde and Ronald M. Bu				
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
U.S. Army Corps of Engineers, Seat	Work Unix 31013			
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
Office of the Chief of Engineers		October 1982		
Washington, D.C. 20314		13. NUMBER OF PAGES		
14. MONITORING AGENCY NAME & ADDRESS(If different	ot from Controlling Office)	105 15. SECURITY CLASS. (of this report)		
MOULL CUING CARDEL BURNE & VARAFFER STEELS	Valifoliang Villed)	, , , ,		
		Unclassified		
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE		
17. DISTRIBUTION STATEMENT (of the abetract entered	in Block 20, if different from	m Report)		
18. SUPPLEMENTARY NOTES				
		1 - Mr. e. co methodologicologic		
		TO THE LOCATION		
19. KEY WORDS (Continue on reverse side if necessary as	nd identify by block number)	रस मा 👉 🗷		
Dams		#27 1 18		
Eutrophication				
Reservoirs		• • • • • • • • • • • • • • • • • • •		
Water pollution				
Water quality NA ABSTRACT (Continue on reverse side M resessory on	d Martin in Mach aumber	, 412 44		
This report documents the effects of the construction of Libby Dam upon the water quality of the United States portion of the Kootenai River during the pre-impoundment phase of a long-term water quality study. Water quality problems during dam construction appeared to be restricted to short-term increases in suspended sediment and turbidity which suppressed the aquatic insect population in the river downstream. Abnormally high background concentrations and abrupt chemical changes in water quality during the course of the study were				
attributed to industrial discharges from a fertilizer plant and mining operation				

DD 1 JAN 79 1473 EDITION OF 1 NOV 65 IS OBSOLETE

20. Abstract (cont'd)

located on an upstream tributary to the river. Nutrient loadings of nitrogen and phosphorus were found to be of sufficient magnitude to predict the development of eutrophic conditions following inpoundment suggesting that efforts in controlling nutrient point sources be continued.

PREFACE

This report was originally prepared in 1975 by Thomas J.H. Bonde, Libby Dam Resident Office and Ronald M. Bush, Environmental Resources Section, Seattle District, Corps of Engineers. Publication of this report is in conjunction with the Corps of Engineers Civil Works Program, Environmental Quality, Work Unit 31013, Environmental Effects and Criteria for Engineering Works in Cold Regions.

While it would be impossible to thank the many friends, colleagues, and associates who have assisted in this study and measurably contributed to its progress, the contributions of several individuals deserve special recognition. Particular appreciation is given to Phillip L. Cole, Resident Engineer, Libby Dam, for his personal interest and encouragement throughout the study and Anthony V. Munch and others in the Libby Resident Office for their assistance in the study. General R.E. McConnell, district engineer during the early phase of the study, Sidney Steinborn, Robert Sato, Robert Ayres, Norm MacDonald, and Roger Ross all deserve a special thanks for their roles in the conception and growth of the study.

The contribution of Robert Rulifson of the Environmental Protection agency, Robert Schumacher and Joe Huston of the Montana Department of Fish and Game, and Phil Torangeau of the University of Montana were deeply appreciated. Much of the credit for the quality of the data can be given to George Pike and his staff, particularly Roger Knapton, Lynn Hull and the field personnel of the Kalispell office of the U.S. Geological Survey. The aid of Inez Herrig and the staff of the Lincoln County Library, who went out of their way to obtain needed reference material, is gratefully acknowledged.

The contents of this report are not to be used for advertising or promotional purposes. Citation of trade names does not constitute an official endorsement or recommendation of the use of such commercial products.

A study of the United States reach of the Kootenai River was undertaken in 1967 to document the effects on water quality from construction and operation of Libby Dam, Montana. This report presents the results of the first or preimpoundment phase of the ongoing study. In March 1972 the river was impounded and the reservoir, Lake Koocanusa, was formed. Lake Koocanusa is a relatively large reservoir with an average surface area of $1.5 \times 10^8 \, \mathrm{m}^2$ (3.75 x 10^3 acres) and a mean depth of 43 m (113 ft). It is about 145 km (90 miles) in length at full pool, extending some 68 km (42 miles) in Canada. In the preimpoundment phase of the study, phosphorus and nitrogen loadings in the Kootenai River were found to be sufficiently high to predict the development of eutrophic conditions, particularly nuisance algal blooms, in the lake following the river impoundment. This prediction was realized when nuisance algal blooms occurred in Lake Koocanusa in the fall of 1974 and late summer and fall of 1975. The bloom species was Aphanizomenon flos-aquae, a blue-green algae characteristic of eutrophic

waters. The blue-green algae also occurred in the lake in 1973 but not in bloom proportions.

Current measures for control of eutrophication in Lake Koocanusa and the Kootenai River appear promising. The major source of phosphorus entering the Kootenai River system has been waste discharged from a fertilizer plant located on a tributary of the Kootenay River in British Columbia. Following the issuance of wastewater effluent regulations by the Britich Columbia Pollution Control Branch, the fetilizer company is undertaking a two-phase waste treatment program. The first phase, completed 30 Septebmer 1975, recycled gypsum waste and has reportedly achieved over 80% reduction in phosphorus in the effluent. The second phase, scheduled for completion in late 1977, will result in a reduction of phosphorus in the waste effluent of 99%. Furthermore, the communities that have been discharging domestic wastes into the river system in British Columbia are upgrading their treatment systems, with some communities choosing land application methods rather than discharging their effluent to surface waters.

The postimpoundment phase of the water quality study will document the effects on the limnology and water quality of Lake Koocanusa and the Kootenai River from treatment of wastewaters discharged into the river system. The first of the postimpoundment reports is expected to be completed in early 1977.

CONTENTS	Page	
Abstract	, i	
Preface		
1.0 Summary and conclusions		
1.1 Findings		
1.2 Recommendations		
2.0 Introduction		
2.1 Purpose and scope	. 3	
2.2 History of study		
2.3 Watershed characteristics		
2.4 Stream characteristics		
3.0 Water quality program		
3.1 Sampling locations		
3.2 Methods		
4.0 Results		
4.1 Physico-chemical data		
4.2 Bacteriological data		
4.3 Bottom fauna		
5.0 Discussion		
6.0 References		
Appendix: Water quality data and related information for the	, , , -	
United States reach of the Kootenai River for the period		
October 1967 through March 1972	. 79	
ILLUSTRATIONS		
Figure		
1. Kootenai river drainage basin	facing p. 4	
2. ERTS photomosaic of the Kootenai River drainage basin.		
3. Mean discharge of the Kootenai River and its major		
tributaries	10	
4. Summary hydrograph for the Kootenai River at Libby,		
Montana	. 11	
5. Profile of the Kootenai River	. 12	
6. Water quality sampling stations	facing p. 1	6
7. Mean monthly discharge at three stations on the Kooten-		
ai River, 1967-1971		
8. Summary thermograph for the Kootenai River at Warland,		
Montana, 1962-1971	23	
9. Water temperatures at three locations in the Kootenai		
River, 1967-1972	23	
10. Monthly mean suspended sediment concentrations		
11. Suspended sediment concentrations and turbidity in the		
Kootenai River below Libby Dam, Oct 1967-Dec 1969	. 28	
12. Suspended sediment concentrations and turbidity in the		
Kootenai River below Libby Dam, Jan-Mar 1972	28	
13. Turbidity created during second-stage diversion, 10-13		
December 1968	29	
14. Dissolved oxygen concentrations in the Kootenai River,	 -	
1967-1972	32	

igur	e	Page
15.	Dissolved oxygen percent saturation in the Kootenai River, 1967-1972	32
16.	Total organic carbon concentrations in the Kootenai River, 1967-1972	34
	pH of the Kootenai River, 1967-1972	34
18.	Bicarbonate concentrations in the Kootenai River, 1967-	36
19.	Specific conductance and dissolved solids concentrations	3
20.	in the Kootenai River, 1967-1972 Specific conductance for the Kootenai River below Libby	36
21.	Dam, 1967-1972	38 40
	Magnesium concentrations in the Kootenai River, 1967-	
23.	1972Sodium concentrations in the Kootenai River, 1967-1972.	40 42
	Potassium concentrations in the Kootenai River, 1967-	
25.	1972 Sulfate concentrations in the Kootenai River, 1967-1972	42 44
26.	Chloride concentrations in the Kootenai River, 1967-	
27.	1972	44
28	1972 Silica concentrations in the Kootenai River, 1967-1972.	46 46
	Total and ortho-phosphorus concentrations in the Koo-	
30.	tenai River, 1967-1972	48
	the Kootenai River, 1967-1972	51
31.	Total and organic nitrogen concentrations in the Kootenai River, 1967-1972	53
32.	Iron concentrations in the Kootenai River, 1967-1972	55
33.	Manganese concentrations in the Kootenai River, 1967-1972	56
34.	Mean number and weight of insects per square meter at four stations in the Kootenai River, 1968-1971	65
35.	Mean number and weight of Plecoptera per square meter	
36.	at four locations in the Kootenai River, 1968-1971 Mean number and weight of Ephemeroptera per square meter	66
37.	at four stations in the Kootenai River, 1968-1971 Mean number and weight of Trichoptera per square meter	67
	at four stations in the Kootenai River, 1968-1971	68
38.	Mean number and weight of Diptera per square meter at four stations in the Kootenai River, 1968-1971	69
39.	Mean number and weight of insects per cylindrical sub-	
	strate sample at three stations in the Kootenai River, 1968 and 1969	71
40.	Mean number and weight of Plecoptera per cylindrical	•
	substrate sample at three stations in the Kootenai River, 1968 and 1969	71
41.	Mean number and weight of Ephemeroptera per cylindri-	• •
	cal substrate sample at three stations in the Koo-	71

Figure	Page
42. Mean number and weight of Trichoptera per cylindrical substrate sample at three stations in the Kootenai	. 71
River, 1968 and 1969	
strate sample at three stations in the Kootenai River, 1968 and 1969	. 72
TABLES	
Table	
1. Discharge of the Kootenai River at Libby, Montana, 1967-1971	. 20
 Suspended sediment concentrations and loadings for the Kootenai River near Rexford, Montana, October 1967- 	.
September 1971	
 Suspended sediment concentrations and loadings for the Kootenai River below Libby Dam, October 1967-March 	
1972 4. Suspended sediment concentrations and loadings for the	
Kootenai River near Copeland, Idaho, October 1967-	
March 1972	. 23
load carried by the Kootenai River, October 1967-	
March 1972	. 27
1968-1971	. 63

1.0 SUMMARY AND CONCLUSIONS

This report documents the water quality of the United States reach of the Kootenai River for the period October 1967 through March 1972. The end date marks the impoundment of the river by Libby Dam in Montana and the beginning of a postimpoundment study, to be reported upon at a future date. The study was conducted by the U.S. Army Corps of Engineers with coordination and cooperation of state and Federal agencies and Canadian agencies. Published concurrent with this report is a report by the British Columbia Pollution Control Branch to document the quality of the Kootenai River within Canada prior to river impoundment (Crozier and Leinweber, 1975).

1.1 Findings.

A significant decrease in the values for a number of water quality parameters was observed in the Kootenai River in 1968 following the implementation of waste water treatment controls to an industrial discharge to a tributary of the Kootenay River in Canada. Nevertheless, the concentration of several constituents of the river's water, particularly phosphorus, continued to be higher than would have been found naturally in the Kootenay River.

The aquatic insect population of the river increased between 1968 and 1969 and remained high throughout the study. Such suggests that the chemical changes noted in the river after implementation of the industrial effluent control in Canada had a beneficial effect upon the insect population.

The nutrient concentrations and loadings, especially phosphorus, of the river were sufficiently high to predict the development of eutrophic conditions in the lake (Lake Koocanusa) formed by impoundment of the river by Libby Dam. A reduction in phosphorus input to the river system is necessary to prevent the development of eutrophic conditions such as nuisance algal blooms in Lake Koocanusa.

Water quality problems observed from Libby Dam project construction activities appeared to have been restricted to increases in suspended sediment and turbidity. Short-term increases in suspended sediment and turbidity due to channel diversions and such activities as drainage of settling ponds created occasional problems, but the major increases occurred coincident with higher river discharge when the hydraulic force and erosive capacity of the river was at its greatest. The increase in suspended sediment from dam construction activities had adverse biological effects on the river as indicated by the suppression of the aquatic insect population up to 14.5 km (9 miles) downstream of the dam site.

1.2 Recommendations.

The waters of the Kootenai River are potentially highly productive, principally as a result of man's activities. Progress has been made in controlling the cultural addition of nutrients and deleterious materials to the Kootenai River system during the course of the preimpoundment study, and facilities to effect further control are planned. The key factor for improving the water quality of the Kootenai River system is the close coordination and cooperation with the Canadian agencies, particularly the British Columbia Pollution Control Branch, through the Water Quality Task Force. Coordination with the Canadian agencies through the task force should be continued.

In order to (1) document the effects of the anticipated waste water control programs on the quality of the river system, (2) document the downstream effects from impoundment of the river by Libby Dam, (3) determine the conditions of the Libby Dam reservoir (Lake Koocanusa), and (4) make meaningful management decisions toward maintaining or improving the quality of the resource, the water quality study of the river system should be continued. The study should continue to be fully coordinated with the state, Federal, and Canadian agencies.

Water quality problems encountered during Libby Dam Project construction activities were principally high suspended sediment and turbidities. Although the increases in suspended sediment and turbidity were generally short term, they did have an adverse effect upon the aquatic ecosystem. The major causative factor appeared to be river diversions. With their inherent water quality problems, diversions should be discouraged. Where diversions are necessary, they should be scheduled to be constructed in the "dry" and utilized on a short-term basis during the period of low flows.

The incorporation of special provisions within construction contracts requiring compliance with state and Federal water quality standards is an effective tool in preventing or minimizing water pollution. Equally important are information pamphlets and preconstruction meetings which bring to the attention of the contractors the water quality standards and the fact that the standards will be strictly enforced. A water quality monitoring program is a compelling addition to these provisions and should be incorporated into the planning, construction, and operation of every major project.

Efforts to prevent water pollution problems during the construction phase of a project can be made more effective by actively seeking the advice and assistance of pollution control and fish and wildlife agencies and notifying them when problems occur, a major activity during the construction of Libby Dam. However, there is often little that can be done at the construction site to remedy water quality problems caused by what environmentally has been poorly planned, engineered, or designed. All projects and contracts should be thoroughly reviewed from a water quality standpoint prior to construction to ensure that they can be built with maximum benefits to the present and potential users of the water resource without deterioration of its quality.

2.0 INTRODUCTION

The Kootenai River (spelled Kootenay in Canada) is a major tributary of the Columbia River and drains parts of southeastern British Columbia, northern Idaho, and northwestern Montana. The river originates in Canada, enters the United States, re-enters Canada and flows into Kootenay Lake, and eventually enters the Columbia River at Castlegar, British Columbia.

In 1966 construction was begun on Libby Dam near Libby, Montana. Libby is one of four dams being constructed under an international treaty to develop the headwaters of the Columbia River. The dam and its reservoir, now officially called Lake Koocanusa, were designed to provide power, flood control, and recreation benefits.

With the start of construction, considerable concern was expressed over the possible detrimental effects that dam construction and river impoundment could have upon water quality and the aquatic ecosystem. Recognizing the many ecological unknowns in this field and the notable lack of specific data related to the Kootenai River, the Corps of Engineers, with the assistance of a number of state and Federal agencies, implemented a water quality study program. High phosphorus concentrations found in the river during early phases of the study and recognition of the potential eutrophic conditions that could result from high phosphorus loading following impoundment led to the development of a joint water quality program between Canada and the United States.

2.1 Purpose and Scope.

The principal objectives of this study as originally formulated in 1967 are threefold:

- 1. To provide reliable scientific data on various water quality parameters before, during, and after the construction of Libby Dam Project.
- 2. To utilize these data in predicting, insofar as possible, any detrimental changes in water quality that are occurring, or may be likely to occur, as a result of the project.
- 3. To recommend actions that can be taken to avoid or minimize water quality problems.

The lack of water quality data on the Kootenai River and its tributaries played a large part in the decision to undertake the study and in its ultimate design. Information on the portion of the river within the United States was virtually lacking. Public health, pollution control, and fish and wildlife agencies recommended that data be collected within their particular field of interest. These requests were accommodated whenever possible. In addition, it was felt that

there were valid scientific reasons for obtaining biological and limnological information on impoundment of a cold water stream. These reasons, coupled with a growing environmental awareness of the public as reflected in Congressional and Executive actions, determined the final direction of the study.

Following meetings with personnel of the British Columbia Pollution Control Branch beginning in 1969, the scope of the study was enlarged to include most of the basin lying upstream from Kootenay Lake. Additional parameters and sampling stations were located on the mainstem of the Kootenai River and its tributaries in both the United States and Canada. Efforts were made to standardize and improve sampling and analytical techniques and provide for the mutual exchange of data.

The purpose of this report is to: (1) present the results of water quality sampling on the United States' portion of the Kootenai River during construction of Libby Dam, incorporating more recent data with that contained in previous reports (U.S. Army Corps of Engineers, 1969, 1970, 1971), (2) to delineate and analyze any physical, chemical, or biological changes occurring in the river during this period, and (3) to provide recommendations for maintaining and improving water quality conditions throughout the entire basin.

2.2 History of Study.

Libby Dam and Reservoir Project was authorized by the 81st Congress of the United States in 1950. Preliminary planning began in 1952. As the project involved both upstream storage and downstream effects, not only in the United States but in Canada; the project was built under an international treaty relating to the cooperative water resource development of the Columbia River Basin. This treaty, which sanctioned construction of Libby and three Canadian dams, was ratified by the U.S. Congress in 1961 and by the Canadian Parliament in 1964. Construction work on the Libby Dam project began in 1966.

The Corps of Engineers, with the cooperation of the Federal Water Pollution Control Administration (FWPCA) (now under the Environmental Protection Agency), began preliminary planning for a water quality study in 1966. Final details of the study, through coordination with the U.S. Geological Survey, Montana Department of Health, and Montana Department of Fish and Game, were completed at a joint meeting in the spring of 1967. As a result of this meeting the Corps of Engineers agreed to a study plan in which the Corps would maintain sampling stations in the area from below the dam site upstream to the International Boundary, while the Environmental Protection Agency (EPA) would maintain those from Libby downstream to the International Boundary. Sampling began at Corps of Engineers stations in October 1967 and at EPA stations in March 1968. Contracts for the analysis of bottom fauna samples and the study of fish population were made with the University of Montana and the Montana Department of Fish and Game by the Corps of Engineers.

The Water Resources Service of the Province of British Columbia and the Corps of Engineers were the agencies designated by the Columbia

L EGEN D

Bosin boundary

Dreinage area of reserve

River Treaty to represent Canada and the United States in activities related to the construction of Libby Dam. A task force consisting of the British Columbia Pollution Control Branch, the Corps of Engineers, and other United States' agencies was established in October 1969.

2.3 Watershed Characteristics.

2.3.1 Description of the Basin.

The Kootenai River Basin is located between 48° and 51° North latitude and 115° and 118° West longitude and includes within its boundaries parts of southeastern British Columbia, northern Idaho, and northwestern Montana. A map of the Kootenai River drainage basin is presented in figure 1.

The basin measures 383 km (238 miles) long by 246 km (153 miles) wide and has an area of 49,987 sq km (19,300 sq miles). About one-quarter of the area, or about 12,432 sq km (4,800 sq miles), lies in the United States. An Earth Resources Technology Satellite (ERTS) mosaic taken from an altitude of 917 km (570 miles) and covering all but the most western part of the basin is shown in figure 2.

The basin ranges in elevation from about 418 m (1,370 ft) above mean sea level, where the Kootenai enters the Columbia River near Castlegar, B.C., to the 3,618 m (11,870 ft) peak of Mt. Assiniboine on the Continental Divide in the northeastern part of the basin. The section of the river lying in the United States ranges from an elevation of about 704 m (2,310 ft) as it enters the country to 533 m (1,750 ft) above mean sea level as it leaves the country.

2.3.2 Geology.

The Kootenai River Basin lies in the Northern Rocky Mountain Physiographic Province. This province is characterized by successive mountain ranges trending north to northwest separated by long straight valleys lying parallel to the ranges. Major land features include the McDonald, Whitefish, and Salish Mountains on the east, the Purcell Mountains in the center, and the Cabinet and Selkirk Mountains on the south and west. Separating these ranges is the Rocky Mountain Trench on the east and the Purcell Trench on the west. Except for the relatively broad, flat valleys in these trenches where the terrain is moderate, the area is typified by narrow valleys and rugged steep slopes with frequent rock outcroppings.

The mountain ranges are composed of folded and faulted crustal blocks of metamorphosed, sedimentary rock materials of the Precambrian Belt Series. This series consists of durable siliceous argillites, quartzites, and impure limestones created during an earlier era from various mixtures of clay, silt, sand, and carbonates which were subjected to low-grade metamorphism. Minor basaltic flows are also present.

2.3.3 Hydrogeology.

The occurrence and distribution of ground water in the drainage is closely related t the geology. Rock outcrops of the Belt series are

Figure 2. ERTS photomosaic of the Kootenai River drainage basin; images acquired on 7 and 8 Feb 73; approximate location of the United States-Canada border, Libby Dam (1), Lake Koocanusa (2), Kootenai River (3), and Kootenay Lake (4).

tightly compacted with little or no porosity or permeability and in these areas ground-water production is small. Glacial deposits consisting of a well-compacted, poorly sorted mixture of clay, silt, sand, and gravels interbedded with glacial lake sediments of finely laminated silty-clay created by periodic damming of the Kootenai River are characteristic of the valleys. In certain of these areas, wells produce an abundance of water. The complex heterogenous nature of these deposits makes their water-bearing characteristics highly variable and ground-water supplies range from virtually nil to excellent.

Numerous springs and seeps occur throughout the basin. Ground water provides much of the base flow of the river and its tributaries during a large part of the year. Characteristically, this water is of excellent quality but more mineralized than water derived from surface supplies.

2.3.4 Climate.

The Kootenai River Basin at its nearest extension lies only 523 km (325 miles) from the Pacific coast and its climate is affected by both modified maritime and continental influences. Maritime influences are generally dominant in the winter and result in rain or snow when warm Pacific air masses are cooled on passing through the mountain ranges. Continental influences are generally dominant in the summer when northward extensions of low pressure areas from the hot southerly interior cause heavy convective-type showers with occasional cloud bursts. Winters are neither as wet nor as warm as the Pacific coastal areas, but are generally less severe than areas to the east of the Continental Divide. The coastal tendency for dry summers persists, but the dominant maritime influence gives way to continental influences as one moves eastward through the basin. Characteristic of most mountainous areas, weather patterns within the basin are complex, with local variations stemming from differences in elevation and specific location in relation to the various mountain ranges.

Temperature

A mean annual temperature of about 5.0°C (41°F) seems to be most representative of the basin as a whole with a fairly wide range between reporting stations. July is the warmest month with mean temperatures ranging from 19.4°C (67°F) at Libby to 13.9°C (57°F) at Sinclair Pass. The extreme maximum temperatures of record at the same stations are 42.8°C (109°F) and 36.1°C (97°F). January is the coldest month of the year with mean recorded temperatures ranging from -5.6°C (22°F) at Libby to -11.1°C (12°F) at Sinclair Pass. The extreme low temperatures at the same stations are -43.3°C (-46°F) and -42.2°C (-44°F) respectively. Extremely low temperatures are not common, however, and at Libby temperatures of -18°C (0°F) are reached on only 12 days in an average year. Oppressive heat and humidity combinations are also rare and the effects of hot summer days are moderated by strong night-time cooling.

Growing Season

The large difference between daily high and low temperatures is most pronounced in its effect in reducing the length of the growing season. The average frost-free period at Libby, Montana, is 79 days, Newgate, B.C., 93 days, and Cranbrook, B.C., 77 days. The shortness of the growing season limits agriculture and native vegetation to only the more hardy species.

Precipitation

The mean annual precipitation for the basin is only 76 cm (30 in) with a variation within the basin of from about 36 cm (14 in) to an estimated 305 cm (120 in) at highest elevations. Approximately 70 percent of the total precipitation falls as snow. The annual snowfall varies from about 102 cm (40 in) at the lower elevations to 762 cm (300 in) in some parts of the mountain areas. Most of the snow falls during the November - March period, although heavy snowstorms can occur as early as mid-September or as late as 1 May.

Cloud Cover

Winters are characteristically cloudy with overcast conditions prevailing as much as 75 percent of the time. Throughout the balance of the year, partly cloudy or clear weather prevails. During the summer months more than 50 percent of the days are clear.

Winds

Being sheltered by the mountains, destructive winds are rare at lower elevations in the basin. The average wind speed at Cranbrook, B.C., is about 9.7 km/hr (6 mph).

2.3.5 Vegetation.

The dominant vegetal type within the basin is coniferous forest with dense stands of trees covering perhaps as much as 90 percent of the basin area. Only a small amount of the area can be classified as agricultural and this is used largely for pasture or hay production. The amount of land devoted to cultivated crops is small.

2.3.6 Cultural Development.

The portion of the Kootenai River Basin lying within the United States is sparcely inhabited. Cultural development has been restricted to the river valleys by the relatively steep mountainous terrain. Human habitation, and the few communities and industries that exist, are found along the Kootenai River and its major tributaries in Boundary County, Idaho, and Lincoln County, Montana. Population figures for these two counties provide a fairly accurate estimate of the basin population in the United States.

	Population			
County	1960	<u>1970</u>		
Lincoln				
Urban	4,942	5,980		
Rural	<u>7,595</u>	11,420		
Total	12,537	17,400		
Boundary				
Urban		2,797		
Rural	5,809	3,574		
Total	5,809	6,371		
Total Both	18,346	23,771		

The basin population has grown by 30 percent in the 10-year period, 1960 to 1970. Most of this increase has occurred in Lincoln County due in large part to the influx of construction personnel working on Libby Dam which, according to Mueller and Wirth (1970), has increased the county population by between 2,500 and 3,000 persons. While the basin population can be described as semi-rural with most people living in unincorporated communities of 2,500 people or less, the rural population is predominantly nonfarm.

The basic industries in the study area are the harvest and manufacture of timber products, mining, agriculture, and tourism. The construction industry has experienced considerable growth with the construction of Libby Dam, but this is believed to be a short-term gain which will decline following the completion of the dam. The quantity, availability, and the type of natural resources in the area would tend to indicate the economy of the area. While agriculture is not a major industry, with arable lands occupying only about 2 percent of the basin area (White, 1960), it does provide a degree of diversity to the economy. Tourism is an industry that has experienced considerable growth in this area in recent years and it is expected that its potential will be enhanced by the completion of the Libby Dam project.

2.4 Stream Characteristics.

2.4.1 Description of the River.

The Kootenai River has a length of approximately 780 km (485 miles) of which 266 km (165 miles), or about one-third of its length, is in the United States. The source of the Kootenai is located in Kootenay National Park, British Columbia, adjacent to the Continental Divide and about 48 km (30 miles) west of Banff, Alberta.

From its source it flows about 161 km (100 miles) south entering Rocky Mountain Trench near Canal Flats, only 2.4 km (1.5 miles) from Columbia Lake, the headwaters of the Columbia River. From this point the river continues southward another 161 km (100 miles) entering the United States in the vicinity of Rexford, Montana, where it leaves the Rocky Mountain Trench and continues, passing southward through the

mountains of the Purcell Range for about 80 km (50 miles) to the confluence of the Fisher River. Here the river turns abruptly west, passing over Kootenai Falls in a gap between the Cabinet and Purcell Mountains. Near Troy, the river trends northwestward to Bonners Ferry where it enters the Purcell Trench. At Bonners Ferry the valley widens and the river meanders northward some 76 km (47 miles), where it reenters Canada. Shortly after crossing the border, the river flows into Kootenay Lake. From the west arm of Kootenay Lake, the river flows 37 km (23 miles) west to its junction with the Columbia River.

2.4.2 Discharge.

The mean annual discharge of the river at its mouth is 796 cu m/sec (28,100 c.f.s.) making the Kootenay the second largest tributary of the Columbia River System, exceeded in volume only by the Snake River. Tributary streams of various sizes are numerous and continuously add to the river's size throughout its length. The significance of the major tributaries in relation to the size of the river is shown in figure 3. Runoff contributed from drainages lying largely within the United States represents an average annual volume of over 5×10^9 cu m (4,058,000 acre-feet), or about 20 percent of the average annual runoff of the river as it joins the Columbia River. A summary of the discharge of the river and its major tributaries at selected gaging stations in the United States can be found in the appendix, table 1.

The longest historical record for the Kootenai River is from the gaging station at Libby, Montana, with records extending back to 1910. A summary hydrograph showing daily means and extremes is shown in figure 4. Daily, monthly, and annual duration curves for the Kootenai River at Libby can be found in the appendix, figure 1.

Figure 3. Mean discharge of the Kootenai River and its major tributaries.

Figure 4. Summary hydrograph for the Kootenai River at Libby, Montana.

2.4.3 Gradient.

A profile of the Kootenai River is shown in <u>figure 5</u>. The total fall from the mouth of the Vermillion River near its source downstream to the Columbia River is 732 m (2,400 ft), which in a distance of 727 km (451 miles) averages 1 m/km (5.3 ft/mile). The steepest parts of the river are between the mouth of the river and Kootenay Lake, where the river drops 105 m (345 ft) in a distance of 26 km (16 miles), and at Kootenai Falls, where the river drops 18 m (60 ft) in 3.2 km (2 miles). A large section of the river extending from Cora Linn Dam, which impounds Kootenay Lake, upstream to Bonners Ferry is virtually flat with the river level at Bonners Ferry being affected by the elevation of Kootenay Lake.

The portion of the river lying in the United States, a distance of 266 km (165 miles), has a fall of 169 m (555 ft) or about 0.6 m/km (3.4 ft/mile). The gradient from Kootenai Falls upstream to the International Boundary is about 0.9 m/km (4.5 ft/mile).

2.4.4 River Bottom and Bank Characteristics.

In general, the river channel up to the high-water mark consists of bottom materials ranging in size from gravel to boulder. The smaller of these materials, due to their instability in periods of high-water velocities, are continually being modified, forming gravel bars and braided channels with alternating pools and riffles. In contrast to upper Kootenai, the lower portion of the river from Bonners Ferry to Kootenai Lake is flat. The river slows and drops its sediment load

Figure 5. Profile of the Kootenai River.

in this area and, in times of high water, overtops its banks. The dominant bottom type in this area is silt.

2.4.5 Water Use.

Water is one of the most abundant resources in the Kootenai River Basin and is used for a number of purposes, including domestic and ndustrial supply, waste disposal, power production, irrigation, and recreation.

Water for domestic and industrial purposes in the basin is obtained from both ground water and surface water sources. Some communities such as Eureka and Troy have municipal wells to supplement their surface supplies. Bonners Ferry has solved a problem of insufficient flow in their tributary source by pumping directly from the Kootenai River. The rural population depends almost entirely upon ground water from wells and springs for domestic purposes.

Irrigation represents the major consumptive use in the basin. A report by the Bureau of Reclamation (White, 1960) indicated that only about 2,873 ha (7,100 acres) within the basin boundaries in Idaho and Montana were under irrigation. The depletion was estimated to be about 11.1×10^6 cu m (9,000 acre-ft) of water annually.

Hydroelectric developments existing prior to the construction of Libby Dam consisted of only two small installations which made it necessary for this portion of the basin to import electrical energy. Montana Light and Power, owned by the St. Regis Company, operates a plant on Lake Creek near Troy with a total installed capacity of 4,500 kW and a peaking capacity of 5,350 kW. The community of Bonners Ferry operates a hydro plant on the Moyie River near Moyie Springs with a rated capacity of 2,650 kW and a peaking capacity of 2,850 kW. Both plants are operated as run-of-the-river plants with little or no storage capacity and therefore have little effect upon normal discharge routings in the basin.

Fishing is the most popular recreational use of water in the river and its tributaries. From all indications, fishing pressure is increasing throughout the basin. Fishing through the ice for trout and whitefish is a popular winter sport on the Kootenai River. Bait or fly fishing, either from shore or by boat, occurs the remainder of the year, making fishing a year-round form of recreation on the Kootenai River. Float trips appeal to a small segment of the population and raft trips are a part of Libby's annual "Logger Days." Swimming is done on some of the tributary streams. Furbearers and waterfowl utilize both the mainstem Kootenai and tributaries as well as the lakes of the basin, although trapping of furbearers and waterfowl hunting would be considered a minor use compared to fishing.

Waste Water Sources.

The location and character of point waste discharges within the United States' portion of the basin are indicated in the appendix, table 2. The more significant of these discharges are discussed below.

Municipal Discharges.

Libby, Montana. The treatment plant for Libby serves approximately 3,000 people and consists of a clarifier, heated digester, and chlorine contact tank. Dry weather discharges of 1892.5 cu m/day (0.5 mgd) increase to more than 5677.5 cu m/day (1.5 mgd) during spring runoff. The plant serves only a fraction of the people living within the metropolitan area.

Eureka, Montana. The treatment plant for Eureka serves about 1,100 people and consists of a bar screen, grit chamber, Spiragester (combination clarifier and cold digester), chlorinator and chlorine contact tank. Chlorination is done during the months of June through October.

Bonners Ferry, Idaho. The treatment plant for Bonners Ferry serves about 2,000 people and consists of a series of aerated sewage lagoons with a retention time which averages 25 days. Discharge volume is about 757 cu m/day (0.2 mgd).

Industrial Discharges.

W. R. Grace Company. The W. R. Grace Company mines and processes vermiculite, a siliceous mineral widely used for insulation, from Vermiculite Mountain 11 km (6.8 miles) east-northeast of Libby. Turbid

waters resulting from thickening and concentration of the vermiculite and drainage from the tailings formerly caused water quality problems in Rainy-Creek and the Kootenai River. In 1971, the mine facilities were expanded and the company constructed a closed-circuit recirculation system. Since that time there has been no discharge from their processing facility although some leaching from the tailings still occurs in the spring of the year.

St. Regis Company. The St. Regis Company operates a lumber and plywood mill in Libby. Sewage wastes are processed by a trickling-filter type plant consisting of a bar screen, primary-secondary clarifier, trickling filter, digester, chlorinator, and chlorine contact tank. Disinfection is done June through October.

While the plant has a capacity of 379 cu m/day (0.1 mgd), the discharge is normally around 227 to 284 cu m/day (0.05 - 0.08 mgd). A large volume of waste water resulting from operation of the log ponds, cooling, and wet stack scrubbers is continually flushed into a large settling pond which merges with the treated sanitary wastes prior to discharge into the Kootenai River. Discharge in 1972 generally ranged from 0.2 to 0.57 cu m/sec (7 to 20 c.f.s.). The company obtains an annual variance to discharge their wastes directly into Libby Creek during cleaning of the settling pond. Included among the characteristics of the log pond wastes is the problem of organic color.

Nonpoint Discharges. Agricultural land occupies only a small fraction of the total land area in the basin and agriculture therefore is believed to be a rather minor pollution source, although it may be significant on certain of the smaller drainages.

Septic systems are widely used throughout the basin and have caused water supply problems in the more populated areas, such as South Libby. The significance of septic systems in relation to ground-water quality and the quality of surface waters in the basin is unknown.

About 90 percent of basin area is classified as forest land and over two-thirds of the basin is classified as commercial forest land or land that is capable of growing an economically harvestable forest crop. No studies concerning the effect of forest practices upon the aquatic environment have been done in this area.

2.4.6 Fishery Resources.

The Kootenai River system, which later was incorporated into Lake Koocanusa, supported a fish population consisting of mountain whitefish, cutthroat trout, rainbow trout, Dolly Varden trout, brook trout, burbot, white sturgeon, kokanee, and a number of associated species. A listing of the species known to occur in the Kootenai River proper is presented in the appendix, table 3. The rainbow, white sturgeon, and kokanee were indigenous to Kootenay Lake and Kootenai River upstream to Kootenai Falls. Brook trout and, likely, the rainbow have been introduced.

Information concerning the status of the fishery prior to 1967 is scarce. Personnel of the Montana Department of Fish and Game have

attempted to obtain historic information by contacting "old timers" in the Libby, Rexford, and Eureka areas. They found that these people told essentially the same story - that of a river with a changing fish population.

A number of persons indicated that prior to the late 1940's cutthroat and burbot were the most abundant fish caught, while rainbow were rare and whitefish were seldom caught. Beginning in the early 1950's a major shift in the population occurred. Burbot and cutthroat declined while whitefish and rainbow increased. Some people remarked that distinct changes in water quality accompanied this population shift. Whereas the river substrate had previously been clean and free of attached algae and silt, problems with attached algae (described as moss), silt, and sediment became more noticeable. Sediment loads during the spring appeared larger and more persistent and on occasion the river seemed to develop an odd color.

Creel census data collected by the Montana Department of Fish and Game for the 1949-64 period show relatively good fishing with an overall success rate of from 1.0 to 1.5 fish per man-hour. While the available evidence is scant, and there are differences of opinion as to the quality of fishing that existed prior to construction of Libby Dam, it seems to be a fair appraisal to say that the river and its tributaries provided good fishing in aesthetically pleasing surroundings. The prevailing opinion of the state from the standpoint of fish management during the preconstruction period was that the river and the associated fishery could be left to manage itself with little more than fishing regulations and occasional stocking. Stocking, for the most part, was confined to the tributaries and involved rainbow trout. Fishing pressure was considered to be relatively light.

3.0 WATER QUALITY PROGRAM

The monitoring program agreed upon in 1967 established that the Corps of Engineers would assume responsibilities for water quality monitoring and studies on the Kootenai River above the city of Libby, while the FWPCA would assume monitoring responsibilities for the area from Libby downstream to the International Border.

3.1 Sampling Locations.

The locations of sampling stations on the United States' portion of the Kootenai River and its tributaries are presented below and shown in figure 6.

Stations in the United States:

- Station 1: Kootenai River near Rexford, Montana, located 62 km (38.5 miles) upstream of Libby Dam site and 16.9 km (10.5 miles) downstream of the International Border.
- Station 2: Kootenai River at Warland, Montana, located 10.7 km (6.6 miles) upstream of Libby Dam site.

- Station 3: Kootenai River below Libby Dam, located 6 km (3.7 miles) downstream of Libby Dam site.
- Station 4: Kootenai River at Lowry Gulch, located 14.5 km (9 miles) downstream of Libby Dam site.
- Station 5: Fisher River.
- Station 6: Tobacco River
- Station 7: Kootenai River at Libby, Montana, located 28 km (17.4 miles) downstream of Libby Dam site (FWPCA monitoring station).
- Station 8: Kootenai River near Leonia, Idaho, located 81 km (50.3 miles) downstream of Libby Dam site (FWPCA monitoring station).
- Station 9: Kootenai River near Copeland, Idaho, located 157 km (97.7 miles) downstream of Libby Dam site (FWPCA monitoring station).
- Station 10: Kootenai River at Porthill, Idaho, located 187 km (116.3 miles) downstream of Libby Dam site (FWPCA monitoring station).
- Station 11: Yaak River.

Station 7 at Libby, Station 8 at Leonia, and Station 10 at Porthill were FWPCA monitoring stations. Chemical sampling was moved from Station 10 at Porthill to Station 9 at Copeland in 1969. The data from these two stations have been combined and are referenced in this report as results of Station 9-10.

The Canadian-U.S.A. Water Quality Task force recommended the following stations receive primary consideration in the development of the joint water quality program:

In the U.S.A.:

Kootenai River near Rexford - (Station 1)
Kootenai River below Libby Dam - (Station 3)
Tobacco River - (Station 6)
Kootenai River near Porthill - (Station 9-10)

In British Columbia:

Kootenay River near Wardner - (Station 17 and 38); Station 17, monitored prior to May 1971 and Station 38 thereafter, located 158.2 km (98.3 miles) upstream of the Libby Dam site.
Bull River - (Station 30)
Elk River - (Station 16)
Kootenay River at Canal Flats - (Station 20); located 257.7 km (160.1 miles) upstream of the Libby Dam site.

.

A.

LEGEND

Emmuni

Drainage area of reserveir

United States Water Quality Station

Δ

Canadian Water Quality

Additional Stations Monitored in British Columbia:

Station 29: Upper St. Mary River.

Station 18: Lower St. Mary River.

Station 14: Kootenai River near Porthill, Idaho, located 187 km (116.3 miles) downstream of the Libby Dam site.

Station 13: Kootenai River at Creston Flats, B.C., located 210.2 km (130.6 miles) downstream of the Libby Dam site.

3.2 Methods employed by United States agencies are indicated below.

3.2.1 Discharge.

Stage records were obtained from Stevens A-35 or digital water stage recorders, supplemented by readings from wire-weight gages installed and maintained by the U.S. Geological Survey. Long-term records were available from most stations. The discharge at station 2 was used for station 3 until September 1971. Daily readings from a wire-weight gage installed immediately below the dam plus data from downstream records were used in calculating the discharge for the remainder of the study period.

3.2.2 Water Temperature.

In 1962 the U.S. Geological Survey, under contract with the Corps of Engineers, installed Ryan Thermographs in the Kootenai River at station 2 and station 8. Similar installations were made in the Kootenai River at Waldo, B.C., in the Elk River (station 16), in the Fisher River (station 5) and Yaak River (station 11) in 1963, and below Libby Dam (station 3) in 1968. These data were supplemented by information from a Stevens A-35T Recorder at Porthill (station 10). Problems with freezing prevented year-round use of the Ryan Thermographs and records for complete months extend only from April or May through October or November, missing the colder months of the year.

Thermograph records were supplemented by once-daily or monthly spot observations taken in connection with sediment or chemical samples. Field personnel used calibrated mercury thermometers or a Model FT-3 Marine Hydrographic Thermometer (Applied Research Austin, Inc.).

3.2.3 Suspended Sediment.

Suspended sediment concentrations, expressed as milligrams of dry sediment per liter of the water-sediment mixture, were determined by the U.S. Geological Survey using methodology of Guy and Norman (1970).

3.2.4 Turbidity.

Turbidity was determined from daily suspended sediment samples. Turbidity concentrations were measured with a Hach 2100 Laboratory Turbidimeter. The turbidity of these samples, some of which had been stored up to 30 days or more, was read after 10 seconds agitation.

These data were supplemented by "grab" samples collected during the monthly chemical sampling, or more frequently as necessary, to define specific turbidity problems. A candle turbidimeter used early in the study for field determination by the U.S. Geological Survey was later replaced with a Hach 2100.

3.2.5 Chemical.

Most of the field and laboratory chemical analyses were accomplished by the U.S. Geological Survey under contract with either the Corps of Engineers or FWPCA. Samples collected prior to July 1969 at stations 7 through 10 were analyzed by FWPCA in their Corvallis Laboratory, Corvallis, Oregon. A number of field determinations were made by Corps of Engineers project personnel.

Recognized procedures of sampling and analysis were followed. The U.S. Geological Survey used the methods of Rainwater and Thatcher (1960) until 1969 and Brown, Skougstad and Fishman (1970) throughout the remainder of the study. The FWPCA used methods reported in Analytical Techniques (FWPCA, 1969a) and FWPCA Methods for Chemical Analysis of Water and Wastes (FWPCA, 1969b) with Standard Methods for the Examination of Water and Wastewater, (APHA, 1973) and ASTM Standards, Part 23, Water; Atmospheric Analysis (ASTM, 1966) as basic references. A listing of the methodology employed by the U.S. Geological Survey is included in the appendix, table 4.

A monthly sampling frequency was maintained at all stations except stations 2 and 4, which were primarily aquatic insect sampling stations. Stations 3 and 5 were sampled on a daily schedule from October 1967 through September 1969. 1/ These daily samples were composited on the basis of specific conductance using a discharge - weighted method. Composited periods ranged from 10 to 30 days, necessitating a delay of at least 30 days between sampling and analysis.

All phosphorus and nitrogen determinations have been expressed as ${\tt P}$ and ${\tt N}$, respectively.

Daily loadings were calculated using the formula: Concentration (mg/1) x mean daily flow (c.f.s.) x 2.447 = Loading (kg/day)

The validity of completed analyses was checked by balancing the chemical equivalents of the major ions. Where the sum of the cations was not within reasonable proximity to the sum of the anions, the determination was rerun. Additional checks were made, wherever possible, by comparing values for dissolved solids with corresponding specific conductance values. The relationship—specific conductance (μ mhos) $\pm 0.1 = 0$

^{1/} Water quality characteristics of tributary streams (stations 5, 6, and 11) will be contained in a future report.

Some of the early pH determinations at stations 1 and 3 were done in the laboratory rather than in the field. Although the laboratory data have been included with the analytical field data in the appendix, they were not used in the graphs or for calculation of CO₂. Likewise, total alkalinity as CaCO₃, which can be calculated from the laboratory bicarbonate data by multiplying mg/1 HCO₃-1 by 0.8202, was not reported as total alkalinity unless the determination was done in the field.

3.2.6 Bottom Fauna.

Bottom fauna sampling was undertaken to determine the existing status of the benthic invertebrate population and to measure any changes occurring during dam construction. Since previous aquatic insect data were not sufficiently definitive for purposes of comparison, and dam construction was already in progress, two control areas above Libby Dam were selected to be compared with two affected areas below the dam. The sites selected were the Kootenai River at Rexford (station 1), at Warland (station 2), below Libby Dam (station 3), and at Lowry Gulch (station 4). Detailed descriptions of each sampling station are contained in the appendix, table 5.

Two different types of samplers were used in the aquatic insect study. The first, used from 1968 through 1971, was a sampler similar to that developed by Waters and Knapp (1961). This sampler was constructed of steel rod with a 9 cm (3.5 in) cutting edge enclosing a sample area of 0.093 sq m (1 sq ft). The framework had a height of 0.52 m (1.7 ft) and was covered with Nitex— netting having a mesh size of 471 microns (38 apertures to the in). Sampling was therefore limited to shallow riffles having a depth less than 0.5 m (1.6 ft). Three samples were collected from each sampling site on each sampling date.

The second method, used only during 1968 and 1969, employed cylindrical substrate samplers as described by Anderson and Mason (1966). These samplers are cylindrical chromium-plated baskets 18 cm (7 in) in diameter and 28 cm (11 in) long filled with coarse native gravels 1.9 to 5.1 cm (0.7 - 2 in) in size. The samples were suspended 1 m (3.3 ft) below the water surface at quarter-points in the river by means of buoys for a period of about 6 weeks as suggested by Mason, Anderson and Morrison (1967). The samples were then lifted, placed in plastic bags and transported to the laboratory where they were washed through a 0.59 mm sieve (U.S. Sieve series 30).

All sorting was accomplished in the laboratory, occasionally using rose bengal as a staining agent to facilitate sorting. Samples were preserved in either 10 percent formalin or 75 percent ethanol. The specimens were identified, to genus if possible, enumerated and the various orders weighed by volumetric displacement.

Fluctuating river levels in spring and early summer and anchor ice in winter occasionally restricted sampling.

^{1/}Trademark of Tobler, Ernst and Traber, Inc.

4.0 RESULTS

Results obtained during the course of the study are summarized below. Detailed data for each parameter and each of the sampling locations can be found in the appendix. Published concurrent with this report is a report by the British Columbia Pollution Control Branch to document the quality of the Kootenai River within Canada prior to river impoundment (Crozier and Leinweber, 1975). The results presented by Crozier and Leinweber are for the period October 1969 through March 1972. To facilitate data comparison, much of the water quality data presented in this report are summarized for two periods of time: before October 1969 and October 1969 through March 1972.

4.1 Physico-Chemical Data.

4.1.1 Discharge.

Comparison of the mean discharge at the Libby gaging station (station 7) for the period 1910-72 with calendar years 1967 through 1971 (table 1) shows that flows 118 to 120 percent of normal characterized the years 1967, 1969, and 1971. The year 1968, with 99 percent of normal, can be considered a normal year. Year 1970 is characterized as a low-water year, with streamflows of only 75 percent of normal. As a whole, flows during the study period appeared only slightly above average. The mean discharge for the study period appeared only slightly above average. The mean discharge for the study period was 366 cu m/sec. (12,922 c.f.s.) or 106 percent of the 345 cu. m/sec. (12,170 c.f.s.) recorded for the 62-year period of record. Annual summaries for other gaging stations, similar to that provided for the Libby gaging station, are presented in the appendix, table 6 through 10. Monthly mean discharges were computed from daily discharge data and are presented in figure 7. Shown in figure 7 is the downstream increase in discharge which occurs due to the influx of both tributaries and ground water, the magnitude of annual

Table 1. Discharge of the Kootenai River at Libby, Montana, 1967-1971.

			Calenda	r Year		
Discharge	<u>1967</u>	1968	1969	1970	<u> 1971</u>	1967-71
Total m ³ /sec-day	149076	124486	151484	93806	149304	
ft ³ /sec-day	5264530	4396170	5349570	3312710	5272610	
Mean m ³ /sec	408	340	415	257	409	366
ft ³ /sec	14420	12010	14650	9076	14450	12922
Maximum m ³ /sec	2172	187	1968	1591	1945	
ft ³ /sec	76700	66200	69500	56200	68700	
Minimum m ³ /sec	60	57	57	47	48	
ft ³ /sec	2110	2000	2000	1650	1700	
Percent 62-yr mean (1910-72;345 m ³ /sec, 12170 ft ³ /sec)	118	99	120	75	119	106

Figure 7. Mean monthly discharge at three stations on the Kootenai River, 1967-1971.

variation in discharge, and the fact that most of the discharge occurs during the months of April, May, and June.

For the years 1967 and 1971, the Kootenai River at Newgate, British Columbia, shortly before it enters the United States, had a mean discharge of 309 cu m/sec (10,906 c.f.s.). At Libby Dam site (station 3), the river had increased in volume to a mean of 341 cu m/sec (12,043 c.f.s.), an increase of 10 percent, indicating that about 90 percent of water passing Libby Dam site is contributed by sources outside of the United States. As the river leaves the United States at Porthill, Idaho (station 10), volume had increased to a mean of 489 cu m/sec (17,274 c.f.s.), or by 58 percent. About 63 percent of the discharge passing station 10 during the years 1967 through 1971 originated in Canada and 37 percent originated in the United States.

Of significance from the physico-chemical and biological stand-points are the large seasonal variations in discharge. Maximum and minimum daily means 1967 through 1971 ranged from 1993 to 37 cu m/sec (70,400 to 1,290 cfs) at Newgate, B.C., and from 2,784 to 74 cu m/sec (98,300 to 2,620 cfs) at Porthill, Idaho. Extremes for the 62-year period of record at Libby range from 3,426 cu m/sec (121,000 c.f.s.) down to 25 cu m/sec (895 c.f.s.), a 135-fold increase between extremes. During the year of study a 40-fold difference between the extremes appeared typical of the upstream stations with a somewhat smaller range at stations further downstream.

4.1.2 Water Temperatures.

Water temperatures of the portion of the river within the United States normally remained at or slightly above freezing from December through February. The development of anchor ice was a common occurrence during the winter with many of the quiet backwaters forming an ice cover. On rare occasions, parts of the river have frozen completely over. Water temperatures increase slowly with the approach of spring, reaching their peak in late July and early August, and decline fairly rapidly in the fall. Water temperatures were normally near 0°C (32°F) about 3 months of the year, above 5°C (41°F) for about 8 months of the year, and above 10°C (50°F) for about 4 months with peak temperatures of about 20°C (68°F).

Annual temperature means for station 10 for calendar years 1964 through 1968 ranged from 7.5°C to 8.4°C (36°-47°F) with a mean for all 5 years of 8.0°C (46.4°F). Although the 1969 data are incomplete, the remaining information does show that mean temperatures during the months of June, July, and August, 1970, and August, 1971, were considerably above normal. The August 1971 mean of 20.1°C (68°F) was the highest monthly mean recorded, not only at station 10, but at all the stations upstream of station 10.

The Kootenai River increases in temperature during spring and summer months with flow downstream; the greatest difference between stations occurred during the month of August when, on the average, the river warmed about 1°C (1.8°F) for each 95 km (59 miles) of length. During the remainder of the year the temperature difference between upstream and downstream stations was less, with the river becoming isothermal during the winter months. While this was the case for mean temperatures, there was considerable daily variation in river temperature, probably due to tributary inflow and local climatic conditions. Some of these variations can be noted in the plots of mean daily temperature in the appendix, figures 2 through 6.

While it is obvious that there is a range of temperature which spans these daily means and that there is considerable year to year difference between monthly and annual means, it should be noted that water temperatures in the river do follow a fairly consistent, predictable pattern which varies little from year to year. Figure 8 shows the deviation between temperature extremes and the 1962-1971 mean.

Spot observations of river temperature made between 1967 and 1972 are graphed in figure 9. Other than normal annual fluctuations, no long-term trends were indicated during the period of study.

Figure 8. Summary thermograph for the Kootenai River at Warland, Montana, 1962-1971.

Figure 9. Water temperatures at three locations in the Kootenai River, 1967-1972.

4.1.3 Suspended Sediment.

Between October 1967 and September 1971 the Kootenai River, near station 1, contained a mean (time-weighted) suspended sediment concentration of 39 mg/l. Concentrations increased to a mean of 47 mg/l, or by 21 percent, at station 3, dropping to 34 mg/l near station 9. Discharge-weighted means, although considerably higher than the timeweighted means, follow much the same pattern with values of 115, 140, and 108 mg/l respectively. Individual determinations ranged from 1 to 1,200 mg/l with high concentrations coinciding with periods of peak discharge. Calendar year values (tables 2, 3, and 4) show that concentrations during a year of high water (i.e. 1969) were as much as 2-1/2 times the mean found during a low water year (i.e. 1970). These differences among years are depicted in a graph (figure 10) of monthly mean (time-weighted) concentrations. Graphs comparing daily concentrations of suspended sediment are presented in the appendix, figures 7 through 11. These data reveal that, with the exception of high concentrations created below Libby Dam during periods of peak discharge in 1968 and 1969, there was little difference in suspended sediment concentrations being carried by the river at any of the stations sampled.

The suspended sediment load as calculated from daily samples and mean daily discharges for the period October 1967 through September 1971 totaled 4.7 x 10^6 metric tons 1 at station 1. This increased to 5.8 x 10^6 metric tons at station 3 and 6.3 x 10^6 metric tons at station 9. Mean daily loads were 3,242 metric tons at station 1, 3,562 at station 2, and 3,866 at station 9. This amounts to an increase of 1.1 x 10^6 metric tons, or 10 percent, between stations 1 and 3, and 5 x 10^6 metric tons, or a 9 percent increase, between stations 3 and 9.

Table 2. Suspended sediment concentrations and loadings for the Kootenai River near Rexford, Montana (Station 1), October 1967 - September 1971.

		Calendar Ye	Period	
Concentration	1968	1969	1970	Oct 67-Sep 71
Mean (time-weighted) mg/l	36	46	21	39
Mean (discharge- weighted) mg/l	104	134	54	115
Maximum daily, mg/l	870	537	223	870
Minimum daily, mg/l	3	1	2	1
Losdings				
Total, tons (matric) $\frac{1}{}$	1,040,118	1,620,937	386,878	4,736,800
Mean daily, tons (metric) 1/2	2,842	4,441	1,060	3,242
Maximum daily, tons (metric)	136,080	81,557	27,125	136,080
Minimum daily, tons (metric)	23	7	13	7

1/Metric tons x 1.102 = tons (short)

Table 3. Suspended sediment concentrations and loadings for the Kootenai River below Libby Dam (Station 3), October 1967 - March 1972.

_		Calendar Year				Period	
Concentration	1968	1969	1970	1971	Oct 67- Sep 71	Oct 67- Mar 72	
Mean (time-weighteng/l	ed) 49	68	21	47	47	43	
Mean (discharge- weighted) mg/l	139	198	57	131	140	135	
Maximum daily mg/	1,200	851	213	692	1,200	1,200	
Minimum daily mg/	1 1	1	2	2	1	1	
Loadings							
Total, tons $(metric)^{\frac{1}{2}}$,414,871	2,423,433	429,283	1,561,880	5,842,376	5,856,103	
Mean daily, tons $(\text{metric})^{\frac{1}{2}}$	3,866	6,640	1,176	4,279	3,999	3,562	
Maximum daily, tons (metric)1/	182,347	144,245	24,676	113,400	182,347	182,347	
Minimum daily tons (metric)	11	8	7	12	7	7	

^{1/}Metric tons x 1.102 = tons (short)

Table 4. Suspended sediment concentrations and loadings for the Kootenai River near Copeland, Idaho (Station 9), October 1967 - March 1972.

_	Calendar Year				Period	
Concentration	1968	1969	1970	1971	Oct 67- Sep 71	Oct 67- Mar 72
Mean (time-weighte mg/l	d) 27	46	20	47	34	31
Mean (discharge- weighted) mg/l	76	135	65	134	108	104
Maximum daily mg/l	573	580	211	515	583	583
Minimum daily mg/l	. 1	1	1	1	1	1
Loadings						
Total tons (metric) 1,	046,749	2,359,103	666,825	2,224,659	6,298,772	6,356,956
Mean daily tons (metric) 1/	2,860	6,463	1,827	6,095	4,311	3,866
Maximum daily tone $(metric)^{1/2}$	106,142	117,936	45,179	92,534	117,936	117,936
Minimum deily tone	. 9	14	7	6	6	6

^{1/}Metric tons x 1.102 = tons (short)

Figure 10. Monthly mean suspended sediment concentrations.

An overall increase of 1.5×10^6 metric tons, or 19 percent, in sediment loading is therefore indicated for the section of the river between Rexford, Montana, and Copeland, Idaho.

Comparison of the data for each of the three stations (tables 2 through 4) shows considerable year to year variation. In 1968, which is considered a normal year in terms of discharge, the Kootenai River at station 1 carried a total suspended load of 1.0×10^6 metric tons. In 1969, a high-water year, the load increased to 1.6×10^6 metric tons, or by 60 percent. In the year which followed, this dropped to slightly under 4×10^6 metric tons, or by 76 percent, demonstrating the cumulative effect that increases and decreases in discharge have upon sediment loadings. Values for station 3 were consistently higher than station 1 with 1.4×10^6 metric tons in 1968, 2.4×10^6 in 1969, and 4.3×10^5 in 1970. Suspended sediment values for station 9 were lower than station 3 with a load of 1.0×10^6 metric tons in 1968, nearly the same with about 2.4×10^6 metric tons in 1969, and considerably higher in 1970 and 1971 with 7×10^5 and 2.2×10^6 metric tons respectively.

The fluctuation in suspended sediment loading among the three stations is shown in <u>table 5</u>. Particularly large increases of 3.7 x 10^5

Table 5. Amount of downstream change in the suspended sediment load carried by the Kootenai River, October 1967-March 1972.

	Metric Tons 1/ Difference Between					
Inclusive Dates	Sta, 1 and Sta, 3	Sta. 3 and Sta. 9	Sta. 1 and Sta.			
Oct 1967 - Dec 1967	+ 8,405	- 13,904	- 5,499			
Jan 1968 - Dec 1968	+374,753	-368,122	+ 6,630			
Jan 1969 - Dec 1969	+802,497	- 64,330	+738,166			
Jan 1970 - Dec 1970	+ 42,405	+237,542	+279,946			
Jan 1971 - Sep 1971	-122,412	+665,140	+542,728			
Oct 1967 - Sep 1971	+1,105,647	+456,325	+1,561,972			
Oct 1971 - Dec 1971		- 2,361				
Jan 1972 - Mar 1972		+ 46,925				
Oct 1967 - Mar 1972		+500,889				

 $1/\text{Metric tons} \times 1.102 = \text{tons (short)}$

and 8.0×10^5 metric tons can be noted between stations 1 and 3 in the years 1968 and 1969. These increases were not reflected in the data for station 9 in 1968 and did not become apparent there until 1969, 1970, and 1971.

It is evident from the data presented that there was a considerable increase in suspended sediment below Libby Dam, particularly during the period of high discharge in the years 1968 and 1969. The greater part of the increase at station 3, which amounted to almost 1.2 x 10° metric tons during the 1968-69 period, is believed to have been, in large part, caused by river diversions necessitated by first- and second-stage cofferdam construction at the Libby Dam roject. These diversions, which were completed in November 1967 and November 1968, caused only short-term increases as they were completed during periods of low flows. Spring runcff, however, with increased volumes and velocities, resorted the bottom materials in the vicinity of these diversions. This placed in suspension large quantities of sediment, almost all of which was silt, being of a grain-size of 0.25 mm or smaller (appendix, table 21). The decrease of 1.2×10^5 metric tons between stations 1 and 3, January through September 1971, resulted from settling of material in suspension in the small pool that was created behind the dam in 1971. The apparent delay in the quantity of sediment being carried by the river between stations 3 and 9 deserves further study.

4.1.4 Turbidity.

Daily turbidity determinations below Libby Dam (station 3) for the period extending from March 1968 through March 1972 are presented in the appendix, tables 24 through 28. These data are supplemented

Figure 11. Suspended sediment concentrations and turbidity in the Kootenai River below Libby Dam, October 1967-December 1969.

Figure 12. Suspended sediment concentration and turbidity in the Kootenai River below Libby Dam, January-March 1972.

Figure 13. Turbidity created during second-stage diversion, 10-13 December 1968.

by monthly and miscellaneous observations (appendix tables 29 through 32) made both above and below the dam to define specific problems.

Turbidity values below the dam site closely paralleled the trends shown for suspended sediment concentrations (figures 11 and 12) and typically remained at about five units or less during periods of base flow. Large increases, at times exceeding 100 turbidity units, appeared only during the spring runoff. Maximums of over 170 units occurred below the dam in June 1969. Occasional freshets and major construction activities created short-term turbidities usually of 25 units or less.

The highest turbidity recorded during the study was 225 units on 11 December 1968 during second-stage diversion of the river. Turbidity readings taken both above and below the diversion are presented in the appendix, table 33, and graphed in figure 13. The peak of the slug which passed station 3 at 1025 hours 11 December was encountered at station 7, 22.2 km (13.8 miles) downstream, almost 10 hours later. The peak of the slug dropped from 225 turbidity units at station 3 to 125 units at station 7, or by 56 percent during this period. The slug widened considerably in downstream flow. A somewhat similar pattern was indicated during drainage of the contractor's settling pond 25-26 November 1969 (appendix, table 34). In both operations, turbidity levels returned rather quickly to normal background levels.

A comparison of monthly turbidity determinations is shown below:

			Formazin	Turbidity	Units
Location	Period	<u>n</u>	<u>Maximum</u>	Minimum	Mean
Sta. 1	Oct 69 - Mar 72	30	43	0	6
Sta. 3	Oct 69 - Mar 72	30	75	1	10
Sta. 9-10	Apr 68 - Sep 69	15	32	0	6
	Oct 69 - Mar 72	23	30	0	4

These data indicate a mean increase of four turbidity units between stations 1 and 3 for the period October 1969 through March 1972 and a mean decrease of six units between station 3 and 9-10, giving a mean decrease of two units between stations 1 and 9-10.

A summary of daily turbidity determinations at station 3 covering the period from March 1968 through March 1972, except for a 2-1/2 month period in January to March 1969, is shown below:

			Formazin	Turbidity	Units
Location	Period	<u>n</u>	<u>Maximum</u>	Mininum	Mean
Sta. 3	Mar - Dec 1968	306	175	2	15
	Mar - Dec 1969	290	150	ī	22
	Jan - Dec 1970	365	83	ī	9
	Jan - Dec 1971	365	160	ī	17
	Jan - Mar 1972	91	30	ī	8
	Mar 68-Mar 72	1,417	175	<u> </u>	15

While some statistical problems exist in evaluating the turbidity, or relative transparency, of the river and the downstream changes which have occurred, it is evident from the data that the river is naturally turbid during the high-water period and particularly during years of extremely high flows. Construction activities undoubtedly increased the turbidity of the river, but the increases appeared limited to periods of high discharge, to occasional short-term additions during periods of low flow, and to the early years of the study when the major foundation work and river diversions were being done at the Libby Dam project. Even with the increased turbidity caused by the construction of Libby Dam and related road and railroad relocations on the Fisher River, monthly turbidity determinations at Porthill-Copeland showed the water to be less turbid (more transparent) on the average than the water found near Rexford.

4.1.5 Color.

True color of a water sample was determined after the sample was clarified by centrifugation to remove turbidity. The color is attributable to the presence of such constituents in the water as metallic ions, plankton, and plant residues. The color of the Kootenai River ranged from 0 to 25 Platinum-Cobalt (Pt-Co) color units throughout the study period. Values of five units or less were generally characteristic of the water, except for the months of May and June when the color increased to maximums of from 10 to 25 units. Other than these seasonal fluctuations, which coincided with periods of high discharge, the color data exhibited no particular temporal trends which might be indicative of changing conditions in the section of the river within the United States.

				Pt-Co Units			
Location	Period	<u>n</u>	Maximum	Miniaum	Mean		
Sta. 1	Jun 67 - Sep 69	23	12	1	3		
	Oct 69 - Mar 72	29	15	0	5		
Sta. 3	Jun 67 - Sep 69	16	10	1	4		
	Oct 69 - Mar 72	30	20	0	5		
Sta. 9-10	Oct 69 - Mar 72	23	10	0	5		

The above data show a small increase occurred in water color between station 1, with a mean of three units, and stations 9-10 with a mean of eight units during the early phases of the study. A mean of five units characterized all stations during the latter phase, October 1969 through March 1972.

4.1.6 Dissolved Oxygen.

Dissolved oxygen concentrations in the section of the Kootenai River under study were generally high, covering a range of from 8.0 to 14.9 mg/l, and were typically near saturation, ranging from 87 to 122 percent saturation. Concentrations of 10 mg/l or more were characteristic of the river during all but the warmest months of the year. As dissolved oxygen concentration fluctuates inversely with water 'amperature, the concentrations follow a definitive pattern of seasonal change. Figures 14 and 15 show the magnitude of these fluctuations.

While there appear to be slight differences between upstream and downstream sampling stations, there is no evidence of any long-term temporal trends at any of the stations sampled.

Comparison of the dissolved oxygen data from station 1 with the downstream stations for the period October 1969 through March 1972 shows a progressive downstream increase between stations 1 and 3 and stations 7 and 8 with a decline noted only between stations 8 and 9-10.

			mg/l Dissolved Oxygen (% Saturation)		
Location	<u>Period</u>	<u>n</u>	Maximum	Miniaua	Mean
Sta. 1	Oct 69 - Mar 72	30	13.4 (108)	8.4 (87)	11.5 (99)
Sta. 3	Oct 69 - Mar 72	30	14.6 (117)	8.4 (87)	(103)
Sta. 7	Oct 69 - Mar 72	30	14.5	8.4 (37)	11.9
Sta. 8	Oct 69 - Mar 72	30	14.9 (120)	10.1	12.7 (109)
Sta. 9-10	Oct 69 - Mar 72	30	14.8 (117)	9.0 (96)	12.1 (104)

The mean concentration of 11.5 mg/l at station 1 increased to 12.7 mg/l at station 8 and dropped to 12.1 mg/l at station 9. Percent saturation increased from 99 percent at station 1 to 109 percent at station 8 and dropped to 104 percent at station 9-10. Such differences between the stations are neither particularly large nor of a magnitude where a water quality problem is suspect. High oxygen concentrations in the river indicate the river was not only able to satisfy the high respiratory demands of desirable species of adequate life but also was able to satisfy demands placed on the resource by industrial and domestic waste discharges.

Below Libby Dam (Sta. 3)

Mexford (Sts. 1)

1970 | 1971 | 1972

Pigure 14. Dissolved oxygen concentrations in the Kootenai River, 1967-1972.

1970

1969

1968

Figure 15. Dissolved oxygen percent saturation in the Kootenal River, 1967-1972.

4.1.7 Biochemical Oxygen Demand (BOD).

BOD determinations were done concurrent with dissolved oxygen determinations at three of the downstream stations. The results showed oxygen demands ranging from 0.1 to 4.9 mg/l for the river as a whole, with means of 1.2 mg/l at station 7, 2.0 mg/l at station 8, and 1.6 mg/l at station 9-10.

			mg/1_BOD
<u>Location</u>	Period	ū	Maximum Minimum Mean
Sta. 7	Oct 69 - Mar 72	30	4.8 0.3 1.2
Sta. 8	Oct 69 - Mar 72	29	4.9 0.5 2.0
Sta. 9-10	Oct 69 - Mar 72	30	3.7 0.1 1.6

The mean BOD at station 8 (2.0 mg/l), which lies downstream from the communities of Libby and Troy, was slightly higher than the 1.2 mg/l at station 7, which is representative of the river above Libby, and the 1.6 mg/l at station 9-10, as the river leaves the United States.

4.1.8 Total Organic Carbon (TOC).

TOC determinations were made at stations 7, 8, and 9-10 beginning in June 1968, but were not begun at stations 1 and 3 until October 1970. Comparison was therefore based on two separate time periods as shown below:

				mg/1 TOC	
Location	<u>Period</u>	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Oct 70 - Mar 72	16	14	0	4
Sta. 3	Oct 70 - Mar 72	17	18	0	5
Sta. 7	Jun 68 - Sep 70 Oct 70 - Mar 72	27 12	15 58	0	3 11
Sta. 8	Jun 68 - Sep 70 Oct 70 - Mar 72	19 11	12 3.5	0	3 2
Sta. 9-10	Jun 68 - Sep 70	22	14	0	3

TOC was generally found to be 5 mg/l or less with only occasional higher values. Means at stations 7, 8, and 9-10 were 3 mg/l from June 1968 through September 1970. Higher values of 4 and 5 mg/l were found at stations 1 and 3, respectively, during the period October 1970 through March 1972. Two extremely high determinations of 58 mg/l on 13 October 1970 and 36 mg/l on 9 December at station 7 were recorded. The two high values coincided with high values for BOD at station 7. Graphs of total organic carbon for stations 1, 3, and 9-10 are presented in figure 16.

4.1.9 pH.

The pH of the Kootenai River was generally within a range of pH 7.0 to 9.0. Field determinations of pH at stations 1, 3, and 9-10 are shown in graphic form in figure 17.

Figure 16. Total organic carbon concentrations in the Kootenai River, 1967-1972.

Figure 17. pH of the Kootenai River, 1967-1972.

Dominating features of the pH data are the irregular short-term fluctuations of the monthly observations developing into what appears to be evidence of a long-term, downward trend. A downstream decrease in pH as the river traverses the United States is evident. Some of the short-term fluctuations, such as the decline noted in late 1970 and early 1971, appear to be characteristic of the river system as a whole in that the pH was noted to decline at each of the sampling stations. Other fluctuations seem to be purely local in nature with low pH at only one or two of the stations while the values elsewhere were high. The abrupt decline to a pH of 6.0 at station 9 in March 1972, which happens to be the minimum pH value found during the study, fits the latter category.

While the specific causes of these local short-term changes in pH are difficult to evaluate, it should be noted that the pH at all stations was generally high and at no time did it enter the range where it might be expected to have a detrimental effect upon water uses and aquatic life.

4.1.10 Total Alkalinity - Bicarbonates.

Field analyses of total alkalinity, expressed as CaCO₃, ranged from 54 mg/l to 152 mg/l in the portion of the Kootenai River under study. Maximum, minimum, and mean total alkalinities at three of the sampling locations are shown below:

			mg/l Total A	ikalinity as	CaCO,
Location	Period	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Oct 69 - Mar 72	28	152	75	115
Sta. 3	Oct 69 - Mar 72	28	142	66	110
Sta. 9-10	Mar 68 - Sep 69	17	114	59	83
	Oct 69 - Mar 72	30	122	54	98

Comparison shows that the total alkalinity of the river decreased from a mean of 115 mg/1 at station 1 to 98 mg/1 at station 9 during the period from October 1969 through March 1972.

Prior to October 1969, alkalinity determinations for stations 1 and 3 were analyzed in the laboratory and reported as bicarbonate (HCO3) and carbonate (CO3) ions. At other stations alkalinities as CaCO3 were reported. For purpose of comparison, alkalinities were converted to bicarbonate ions. The resultant bicarbonate data, which combine both field and laboratory analyses, are shown in graphic form in figure 18.

This information shows that bicarbonate concentrations fluctuated seasonally during the preimpoundment period with highest concentrations occurring during periods of base flow in midwinter and lowest concentrations occurring during the period of peak runoff in the late spring. Water entering the United States near station 1 normally had a higher bicarbonate content and thus a higher "buffering" capacity than waters leaving the United States. The downstream decrease was progressive, implicating tributary dilution with waters of lower alkalinity. It is significant to note that the highly alkaline concrete wastes from dam construction had little, if any, effect upon the rivers' bicarbonate concentration.

Figure 18. Bicarbonate concentrations in the Kootenai River, 1967-1972.

Figure 19. Specific conductance and dissolved solids

concentrations in the Kootenai River, 1967-1972.

4.1.11 Carbon Dioxide (CO₂).

Field pH and alkalinity determinations were used to estimate the amount of free CO_2 in solution. Although the calculations show the river as having a relatively wide range of from 0.4 to 105.6 mg/l free CO_2 , most determinations were under 4 mg/l. The values obtained are summarized below:

				mg/1 CO ₂	
Location	Period	ū	Maximum	Minimum	Mean
Sta. 1	Oct 69 - Mar 72	27	20.3	0.5	3.8
Sta. 3	Oct 69 - Mar 72	28	16.0	0.4	3.4
Sta. 9-10	Mar 68 - Sep 69 Oct 69 - Mar 72	17 80	6.3 105.6	0.8	2.4 10.0

High ${\rm CO}_2$ concentrations appeared to occur more frequently during the fall and winter months than during the rest of the year and more frequently at the downstream stations than those upstream.

4.1.12 Total Dissolved Solids - Specific Conductance.

Determinations of specific conductance and the amount of total dissolved solids, or to be more precise the filterable residue, in the water were made at a number of the sampling stations on the Kootenai River. A summary of the results from three of these stations is presented in figure 19 and tabulated below:

		mg/l total dissolved solids (Specific Conductance umhos/cm 25°C)					
Location	Period	<u>n</u>	Maximum	Minimum	Mean		
Sta. 1	June 67 - Sep 69	24	349	122	193		
		24	(522)	(216)	(315)		
	Oct 69 - Mar 72	30	252	112	184		
		2.7	(411)	(195)	(327)		
Sta. 3	Jun 67 - Sep 69	16	338	122	190		
		16	(511)	(199)	(304)		
	Oct 69 - Mar 72	32	226	118	182		
		31	(372)	(190)	(302)		
Sta. 9-10	Mar 68 - Sep 69	16 <u>1</u> /	179	91	136		
		16	(300)	(150)	(224)		
	Oct 69 - Mar 72	30 1/	189	83	147		
		30	(311)	(129)	(242)		

The concentration of total dissolved solids ranged from a maximum of 349 mg/l at station 1 in December 1967 to a minimum of 83 mg/l for station 9 in March 1972. The total dissolved solids data indicate downstream dilution as the river traverses the United States. Specific conductance, as might be expected, follows practically the same pattern in the Kootenai River as seen in dissolved solids. Values range from 522 μ mhos at station 1 to 129 μ mhos at station 9.

^{1/}Estimates based partially or wholly on conductance values.

Figure 20. Specific conductance for the Kootenai River below Libby Dam, 1967-1972.

Figure 19 indicates that conductance and dissolved solids concentrations were significantly higher in the winter of 1967-68 than during the remaining years of study. Daily determinations of specific conductance at station 3 for the period October 1967 through September 1969 are contained in the appendix, table 35. A graph of that information (figure 20) indicates not only the high conductance values which characterized the winter of 1967-68, but also a rather abrupt decrease which occurred between the 17th and 18th of September 1968 when the conductance dropped from 356 µmhos to 287 µmhos.

The abnormally high conductivity values observed from the beginning of the study through September 1968 can be attributed to industrial waste discharges in Canada and the decline attributed to efforts to control the wastes discharged to the river system. Since October 1968, total dissolved solids concentrations and conductance values have remained relatively stable, apparently fluctuating only with variations in discharge.

4.1.13 Hardness.

The water of the Kootenai River is moderately hard to hard. Total hardness concentrations, reported as $CaCO_3$, ranged from 273 mg/l at station 1 in December 1967 to 64 mg/l at station 9 in May 1970. A summary of the data for three of the stations sampled is shown below:

		mg/1 Total Hardness				
Location	<u>Period</u>	<u>n</u>	Maximum	Hinimum	Mean	
Sta. 1	Jun 67 - Sep 69	24	273	103	157	
	Oct 69 - Mar 72	30	194	91	150	
Sta. 3	Jun 67 - Sep 69	16	263	101	152	
	Oct 69 - Mar 72	30	184	82	148	
Sta. 9	Apr 68 - Sep 69	15	256	80	131	
	Oct 69 - Mar 72	25	152	64	121	

Total hardness follows the same general trends established for total dissolved solids. Peak concentration, which exceeded 250 mg/l over the winter of 1967-68, declined and fluctuated throughout the remainder of the preimpoundment period around a mean of from 120 to 150 mg/l.

Noncarbonate hardness, which reached 137 mg/l at station 1 in December 1967, did not exceed 50 mg/l at any of the stations after October 1968 and was noted to reach zero at some of the downstream stations during the latter part of the study.

4.1.14 Calcium (Ca).

Calcium is among the most common of the substances in water and is usually more abundant than any of the other alkaline-earth metals. As is magnesium, Ca is essential to plant growth and is among the least toxic cations in the aquatic environment. Calcium was found to be the dominant cation in the Kootenai River. Calcium concentrations ranged from a maximum of 85 mg/l at station 1 in December 1967 to 18 mg/l at station 9 in March 1972. A summary of the data for three of the stations sampled is shown below:

				ng/l Ca	Ca	
Location	Period	<u>n</u>	Maximum	Minimum	Mean	
Sta. 1	Jun 67 - Sep 69	24	85	31	45	
	Oct 69 - Mar 72	30	51	26	41	
Sta. 3	Jun 67 - Sep 69	16	81	30	44	
	Oct 69 - Mar 72	30	50	23	40	
Sta. 9-10	Oct 69 - Mar 72	19	41	18	32	

Mean Ca concentrations ranged from 40 to 45 mg/l as the river entered the United States to about 30 mg/l as it left the country.

Calcium concentrations obtained during the course of the study are graphed in <u>figure 21</u>. It is significant to note here that the trend for Ca, as did that for total hardness, parallels that previously noted for total dissolved solids.

4.1.15 Magnesium (Mg).

Magnesium concentrations ranged from 16 mg/l at stations 1 and 3 in January 1970 to 4.6 mg/l at station 9 in May 1971. A summary of the data for three of the stations sampled is shown below:

			mg/1 Mg		
Location	<u>Period</u>	ū	Maximum	Minimum	Mean
Sta. 1	Jun 67 - Sep 69	24	15	6.3	11
	Oct 69 - Mar 72	30	16	6.3	12
Sta. 3	Jun 67 - Sep 69	16	15	6.3	10
	Oct 69 - Mar 72	30	16	6.0	12
Sta. 9-10	Oct 69 - Mar 72	19	12	4.6	9.3

9 20

8

1971 1972

1968 1969 1970

1961

1967 | 1968 | 1969 | 1970 | 1971

, 1 2 °

9 0,7

Figure 21. Calcium concentrations in the Kootenai River, 1967-1972.

Figure 22. Magnesium concentrations in the Kootenai River, 1967-1972.

3 . I

20

Magnesium concentrations averaged about 12 mg/l as the river entered the United States, diluting downstream to 9 mg/l as the river re-entered Canada. A graph of Mg concentrations is shown in figure 22. An interesting feature of Mg is that concentrations remained relatively stable throughout the study period, apparently lacking the high concentrations which characterized some of the other parameters such as Ca.

4.1.16 Sodium (Na).

Sodium concentrations ranged from 6.9 mg/l at station 3 in November 1970 to 0.8 mg/l at station 3 in June 1971. A summary of the data for three of the stations sampled is shown below:

				mg/1 Na	
Location	Period .	ū	Maximum	Minimum	Mean
Sta. l	Jun 67 - Sep 69	24	4.2	1.1	2.7
	Oct 69 - Mar 72	30	6.3	1.1	4.0
Sta. 3	Jun 67 - Sep 69	16	3.8	1.0	2.6
	Oct 69 - Mar 72	30	6.9	0.8	4.0
Sta. 9-10	Apr 68 - Sep 69	15	3.6	1.0	2.3
	Oct 69 - Mar 72	14	4.6	1.5	3.2

Sodium concentrations, which averaged 2.7 mg/l at station 1 during the earlier phase of the study, increased to 4.0 mg/l in the later phase. Figure 23 shows this increase being reflected throughout the system. Highest concentrations appeared during the winters of 1969-70 and 1970-71.

4.1.17 Potassium (K).

Potassium concentrations ranged from 2.8 mg/1 at station 3 in December 1971 to 0.2 mg/1 at station 1 in June 1971. A summary of the data for three of the stations is shown below:

			mg/1 K		
Location	Period	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Jun 67 - Sep 69	24	1.2	0.4	0.8
	Oct 69 - Mar 72	30	1.4	0.2	0.8
Sta. 3	Jun 67 - Sep 69	16	2.0	0.5	1.0
	Oct 69 - Mar 72	30	2.8	0.4	0.9
Sta. 9-10	Mar 67 - Sep 69	16	1.0	0.5	0.8
	Oct 69 - Mar 72	20	1.6	0.3	0.9

Mean K concentration ranged from 0.8 to 1.0 mg/l at the various stations sampled. The apparent stability of K ion concentrations is shown in figure 24. Unlike many of the other chemical parameters, K did not appear to follow any seasonal or long-term trends and concentrations entering the United States are roughly the same as concentrations leaving the United States.

4.1.18 Sulfate (SO_4) .

Sulfate concentrations in the Kootenai River ranged from 138 mg/1 to 11 mg/1. A summary of the data for three of the stations sampled is shown below:

Figure 23. Sodium concentrations in the Kootenal River, 1967-1972.

Figure 24. Potassium concentrations in the Kootenai River, 1967-1972.

	mg/1 SO,					
Location	Period	<u>a</u>	Maximum	Minimum	Mean	
Sta. 1	Jun 67 - Sep 69	24	138	12	49	
	Oct 69 - Mar 72	30	51	12	36	
Sta. 3	Jun 67 - Sep 69	16	133	12	36	
	Oct 69 - Mar 72	30	51	11	34	
Sta. 9-10	Apr 68 - Sep 69	15	58	14	30	
	Oct 69 - Mar 72	18	53	13	27	

A graph of the SO₄ concentrations is shown in figure 25. Sulfate is one of the major anions in freshwater and the second most abundant anion in the Kootenai River, exceeded in quantity only by bicarbonates. Unlike bicarbonates, however, which have remained rather stable, SO₄ concentrations have undergone fluctuations similar to those experienced by the major cation Ca. Following the peaks in SO₄ concentration experienced early in the study, concentrations have varied between 11 and 53 mg/l with little difference in range among sampling stations, although the mean for downstream stations was less than that for upstream stations. A summary of SO₄ for the upstream and downstream stations on the Kootenai River in the United States is presented below:

			SO4 Loading	, Metric	Tons/Day
Location	Period	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Jun 67 - Dec 67	6	2,200	379	1,163
	1968 Calendar year	9	2,384	378	1,159
	1969 Calendar year	12	1,683	307	666
	1970 Calendar year		1,249	146	509
	1971 Calendar year	12	1,853	257	649
Sta. 9-10	Mar 68 - Dec 68	10	3,793	492	1,368
	1969 Calendar year	6	2,799	295	976
	1970 Calendar year	6	1,117	408	612
	1971 Calendar year	_	874	256	470

An approximate 50 percent decrease in mean daily SO₄ loading in the river occurred after 1968.

4.1.19 Chloride (C1).

Chloride concentrations ranged from 7.1 mg/l at station 1 in December 1971 to less than 1.0 mg/l at station 10 on a number of occasions during 1968 and 1969. A summary of these data for three of the stations sampled is shown below:

				mg/1 C1	
Location	<u>Period</u>	ū	Maximum	Minimum	Mean
Sta. 1	Jun 67 - Sep 69	24	3.0	0.4	1.8
	Oct 69 - Mar 72	30	7.1	1.1	2.7
Sta. 3	Jun 67 - Sep 69	16	2.8	0.8	1.8
	Oct 69 - Mar 72	29	6.0	1.0	3.5
Sta. 9-10	Apr 68 - Sep 69	15	3.0	1.0	1.7
	Oct 69 - Mar 72	23	4.5	1.4	3.1

Figure 26. Chloride concentrations in the Kootenai River, 1967-1972.

Figure 25. Sulfate concentrations in the Kootenai River, 1967-1972.

Mean Cl concentrations at station 1 increased from 1.8 mg/l during the early phase of the study to 2.7 mg/l during the later phase, with the downstream stations reflecting increases of similar magnitude. A graph of the Cl data is shown in figure 26. The temporal increases noted in Cl ions parallel, in many respects, increases noted in the Na ion.

4.1.20 Fluoride (F).

Fluoride concentrations in the river were high, with mean concentrations of 0.6 - 0.8 mg/l. Lower concentrations characterized downstream stations, indicating dilution as the river flowed through the United States. A graph of F concentrations for stations 1, 3, and 9-10 is presented in figure 27. A summary of the data for these stations is shown below:

			mg/1 F		
Location	Period	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Jun 67 - Sep 69	24	3.4	0.0	0.9
	Oct 69 - Mar 72	30	1.6	0.1	0.8
Sta. 3	Jun 67 - Sep 69	16	2.0	0.2	0.7
	Oct 69 - Mar 72	30	1.5	0.2	0.7
Sta. 9-10	Mar 67 - Sep 69	_			
	Oct 69 - Mar 72	13	1.1	0.2	0.6

As can be seen in figure 27, there was a decline in observed peak F concentrations after mid-1968. The decline in F in the river is also reflected in the loading data, tables 47-49 of the appendix. For example, the mean F loading at station 1 for June 1967-December 1968 is 21.4 metric tons/day and for January 1969-March 1972 it is calculated to be 11 metric tons/day.

4.1.21 Silica (SiO₂).

Silica concentrations observed range from 10 mg/l at station 10 in April 1969 to 0.8 mg/l at station 3 in August 1970. Silica concentrations monitored at stations 1, 3, and 9-10 are graphed in $\frac{\text{figure 28}}{\text{and a summary of the data for these stations is presented below:}$

				/1 SiO ₂		
Location	Period	<u>n</u>	Maximum	Minimum	Mean	
Sta. 1	Jun 67 - Sep 69	24	8.5	4.1	5.9	
	Oct 69 - Mar 72	30	7.7	1.3	5.7	
Sta. 3	Jun 67 - Sep 69	16	8.3	2.8	6.0	
	Oct 69 - Mar 72	30	8.9	0.8	5.8	
Sta. 9-10	Mar 68 - Sep 69	16	10.0	3.2	6.9	

The mean $\mathrm{Si0}_2$ concentrations for these three stations ranged from 5.8 to 6.9 mg/l with the higher value characterizing the downstream stations. While $\mathrm{Si0}_2$ concentrations appear to demonstrate some of the trends characteristic of parameters such as Ca, the decline appeared to be more gradual, occurring over a period of years and culminating in the low concentrations noted in the summer of 1970.

Figure 28. Silica concentrations in the Kootenai River, 1967-1972.

1969 | 1970 | 1971

1967 1968

1971 1972

1970

1969

1967 | 1968

1971 1972

1969

Porthill-Copeland (Sta. 0-10)

Porthill-Copeland &ta. ^-10)

4.1.22 Phosphorus.

A plot of total and ortho P concentrations for the study period for stations 1, 3, and 9-10 is presented in $\underline{\text{figure 29}}$ and a summary of P data is presented below:

			3.6	/1 Ortho-P	
Location	Period	<u>a</u>	Maximum	Minimum	Mean
Sta. 1	Oct 67 - Dec 67	3	0.92	0.07	0.52
	1968	10	0.97	0.14	0.42
	1969	10	0.26	0.01	0.08
	1970	12	0.35	0.04	0.12
	1971	12	0.17	0.01	0.06
	Jan 72 - Mar 72	3	0.15	0.06	0.11
Sta. 3	Oct 67 - Dec 67	4	0.53	0.08	0.37
	1968	9	1.08	0.11	0.48
	1969	10	0.23	0.01	0.11
	1970	12	0.37	0.01	0.12
	1971 Jan 72 - Mar 72	12 5	0.16 0.13	0.00 0.01	0.07 0.08
Sta. 9-10	Mar 68 - Dec 68	11	0.25	0.05	0.15
	1969	6	0.18	0.022	0.06
	1970	6	0.13	0.06	0.10
	1971	12	0.10	0.00	0.05
	Jan 72 - Mar 72	3	0.13	0.02	0.07
			/1 To	tal dissolv	nad D
Location	Period	<u>n</u>	Maximum	Minimum	Mean
	0-0-67	3	0.04	0.00	0.65
Sta. 1	Oct 67 - Dec 67	9	0.94 1.09	0.09 0.17	0.55
	1968 1969	10	0.34	0.17	0.49
	1970	9	0.15	0.04	0.09
Sta. 3	Oct 67 - Dec 67	4	0.72	0.09	0.55
	1968	8	1.20	0.15	0.52
	1969	10	0.49	0.02	0.15
	1970	9	0.18	0.04	0.10
Sta. 9-10	1969	6	0.18	0.00	0.09
	1970	12	0.17	0.01	0.07
	1971	12	0.13	0.00	0.07
	Jan 72 - Mar 72	3	0.14	0.05	0.09
Location	Period		Maximum	/1 Total P Minimum	- Wass
DOCALION	FELLOG	<u>n</u>	MEXIMUM	MINITEGE	Mean
Sta. 1	Oct 69 - Dec 69	3	0.33	0.14	0.21
	1970	12	0.41	0.05	0.21
	1971	10	0.31	0.04	0.18
	Jan 72 - Mar 72	3	0.22	0.16	0.19
Sta. 3	Oct 69 - Dec 69	3	0.55	0.19	0.34
	1970	12	0.43	0.08	0.20
	1971	11	0.27	0.04	0.16
	Jan 72 - Mar 72	5	0.18	0.11	0.14
Sta. 9-10	Mar 68 - Dec 68	11	0.33	0.072	0.20
	1969	9	0.18	0.01	0.09
	1970	12	0.20	0.02	0.09
	1971	11	1.10	0.05	0.19
	Jan 72 - Mar 72	3	0.15	0.11	0.13

Figure 29. Total and ortho-phosphorus concentrations in the Kootenai River, 1967-1972.

As shown in <u>figure 29</u> and reflected in the above table, there was a significant reduction in P levels in the river after 1968. Ortho-P concentrations in 1968 reached as high as 0.97 mg/l at station 1 and 1.08 mg/l at station 3. After 1968, peak ortho-P concentrations were 0.35 and 0.37 mg/l for stations 1 and 3, respectively. The mean ortho-P concentration decreased from 0.44, 0.45, and 0.15 mg/l at stations 1, 3, and 9-10, respectively in 1967-1968, to 0.09, 0.10, and 0.07 mg/l, respectively, after 1968.

Lower mean ortho and total dissolved P concentrations were more characteristic of the downstream stations in the Kootenai River than upstream stations.

Phosphorus loading in the Kootenai River for the days sampled are presented in the appendix (tables 47, 48, and 49) and summarized below:

			metric tons/day		
Location	Period Period	n	Maximum	Minimum	Mean
Sta. 1	1968	10	33.2	1.9	9.2
	1969	10	4.0	0.1	1.4
	1970	12	3.9	0.2	1.7
	1971	12	9.2	0.1	1.7
Sta. 3	1968	9	29.1	3.2	10.2
	1969	10	6.5	0.2	1.8
	1970	12	4.4	0.1	2.0
	1971	12	9.6	0.0	1.8
Sta. 9-10	Mar 68 - Dec 68	11	2.9	0.6	1.8
	1969	6	4.0	0.6	1.8
	1970	6	3.0	1.0	1.5
	1971	12	5.6	0.0	1.5

Orebo P Loading

			Total P Loading Metric Tons/Day		
Location	Period	<u>a</u>	Maximum	Minimum	Mean
Sta. 1	1970 1971	12 10	32.0 46.3	0.3 1.3	5.5 7.5
	19/1	10	40.3	1.3	7.3
Sta. 3	1970 1971	12 11	42.8 28.4	0.5 0.4	5.9 5.8
	1971	11	40.4	0.4	3.0
Sta. 9-10	Mar 68 - Dec 68	11	6.3	1.6	3.2
	19 69	9	30.0	0.1	5.2
	1970	12	7.7	0.1	2.4
	1971	11	16.0	1.2	4.7

The sharp reduction in P level in the Kootenai River after 1968 is demonstrated by the ortho-P loading data. Mean ortho-P loading at stations 1 and 3 decreased from 9.2 and 10.2 metric tons/day, respectively, in 1968, to 1.4-1.7 and 1.8-2.0 metric tons/day, respectively, in 1969, 1970 and 1971. Such a dramatic reduction was not as evident at stations 9-10.

A reduction in the average daily amount of P being carried by the river in its flow through the United States is indicated by the loading data.

Annual P loading was estimated by summation of computed daily loading which is calculated using mean daily discharge and estimated daily P concentrations as computed from linear interpolation of observed data. Estimated annual loadings for stations 1 and 3 are presented below:

Metric Tons Total P/Year

		Sta. 1	<u>Sta. 3</u>
1970	calendar year	1,827	1,905
1971	calendar year		1,924

Metric Tone Ortho-P/Year

		<u>Sta. 1</u>	<u>Sta. 3</u>
1968	calendar year	3,225	3,259
1969	calendar year	840	816
1970	calendar year	595	688
1971	calendar year		705

The sharp decrease after 1968 of P being carried by the river as it enters the United States is shown by the data. After 1968, loading remained rather stable. In the order of 2,000 metric tons per year total P, about 35 percent being ortho-P, is expected to enter Lake Koocanusa annually upon impoundment of the river if loading remains consistent with that estimated for 1969, 1970, and 1971.

4.1.23 Nitrogen (N).

The four forms of N sampled during the study were ammonia (NH $_3$ -N), nitrite (NO $_2$ -N), nitrate (NO $_3$ -N), and organic N which, in sum, provide an estimate of the total N present in the water.

Nitrites are unstable in the presence of dissolved oxygen and are quickly oxidized to NO_3 . As would be expected, NO_2 -N was generally found to be below detectable limits in the highly oxygenated waters of the Kootenai River and on the average represented 2 percent of the total N.

Ammonia Nitrogen (NH₃-N)

Ammonia nitrogen concentrations ranged from 0.93 mg/l (station 8, March 1971) to undetectable levels, with undetectable levels occurring rather frequently at stations throughout the river system. A summary of NH_3 -N concentrations at three of the sampling stations is presented below:

				2/1 NH ₂ -N	
Location	Period	n	Maximum	Minimum	Mean
Sta. 1	Oct 69 - Mar 72	30	.37	.00	.11
Sta. 3	Oct 69 - Mar 72	30	. 36	.00	.08
Sta. 9-10	Mar 68 - Sep 69 Oct 69 - Mar 72	16 30	.12 .21	.01 .00	.05 .07

Ammonia concentrations have been graphed in figure 30; no long-term trends are indicated.

Nitrate Nitrogen (NO3-N).

Nitrate nitrogen concentrations ranged from 2.0 mg/l at station 8 in March 1972 to below detectable limits. Concentrations observed at three of the stations sampled are graphed in figure 30 and summarized below:

				/1 NO ₂ -N	
Location	Period	<u>a</u>	Maximum	Minimum	Mean
Sta. 1	Oct 69 - Mar 72	30	.28	.00	.14
Sta. 3	Oct 69 - Mar 72	30	. 79	.00	.16
Sta. 9-10	Mar 68 - Sep 69	17	.25	.01	.09
	Oct 69 - Mar 72	30	. 44	.00	.09

Figure 30. Ammonia nitrogen and nitrate nitrogen concentrations in the Kootenai River, 1967-1972.

A decrease in NO3-N concentration as the river flows through the United States is indicated by the data. Seasonal trends which occurred at all stations differ somewhat from the parameters previously discussed in that minimum concentrations occur in late summer and early fall, rather than during the usual April to June period of peak stream-flow.

Organic Nitrogen.

Concentration of organic N ranged from 2.9 mg/l at station 9 in January 1972 to below detectable limits on a number of occasions, mostly in 1970 and 1971. A summary of the determinations made at three of the sampling stations is shown below:

			mg/1 Organic N		
Location	<u>Period</u>	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Oct 69 - Mar 72	30	0.41	0.00	0.13
Sta. 3	Oct 69 - Mar 72	30	0.31	0.00	0.14
Sta. 9-10	Mar 68 - Sep 69 Oct 69 - Mar 72	16 28	0.69 0.40	< 0.04 0.00	<0.28 0.09

Mean organic N concentrations for the period October 1969 through March 1972 were 0.13 mg/l at station 1, 0.14 mg/l at station 3, and 0.09 mg/l at stations 9-10.

Total Nitrogen.

Estimated total N concentration (the sum of the organic and inorganic components) is graphed in <u>figure 31</u>. In general, concentrations of both organic and inorganic N are higher in the upstream areas than downstream. On the average, organic N, NO_3 -N, NO_2 -N, and NH_3 -N at station 1 was 34, 38, 2, and 26 percent of total N, respectively. At stations 9-10 the mean percent of total N that was organic increased to 39 percent, while the percent that was NO_3 -N and NH_3 -N decreased to 36 and 23 percent, respectively. There is indication that N concentrations at station 9 increased following the particularly low concentration of 1970 and early 1971.

Total N loading for the days sampled is presented in tables 47, 48, and 49 of the appendix and summarized below:

			Total N Loading (metric tons/day)		
Location	<u>Period</u>	ū	Maximum	Minimum	Mean
Sta. 1	1970	12	27.3	1.1	7.1
	1971	12	55.6	0.6	11.2
Sta. 3	1970	12	50.8	1.0	8.5
	1971	12	52.5	0.6	11.1
Sta. 9-10	1969	9	45.9	1.0	13.1
	1970	12	16.8	0.4	4.2
	1971	10	68.1	1.4	17.1

Low runoff and relatively low N concentrations characterized the Kootenai River in 1970 and may explain the low N loading values in 1970. The large discrepancy between 1970 and 1971 N loading at stations 9-10 may be the result of delay in transport of N downstream due to the differences in discharge between 1970 and 1971.

An estimate of annual N loading in the river at stations 1 and 3 is presented below:

Total N Loading Metric tons N/annum

Period	Station 1	Station 3
1970	2,376	2,825
1971	4,070	4,057

Figure 31. Total and organic nitrogen concentrations in the Kootenai River 1967-1972.

The annual loading was estimated by summing computed daily loadings which were calculated from mean daily discharges and estimated daily N concentrations as computed from linear interpolation of observed concentration data.

If stream loadings of N were to remain consistent with those recorded for 1969-71, an estimated N loading in excess of 3000 metric tons/year would be expected to enter Lake Koocanusa following impoundment of the Kootenai River by Libby Dam.

4.1.24 Trace Elements.

Fresh waters contain a number of elements which under normal conditions are found in extremely small quantities, usually less than a milligram per liter. Many of the trace elements are essential for biological functions of aquatic organisms, although some of these same essential elements are toxic to life if present in appreciable quantities.

Among the trace elements monitored in the Kootenai River were Fe, Mn, Cu, Pb, Zn, Mo, Co, B, V, Al, Li, Se, Ba, Ni, Ag, Be, Sr, Cd, As, Hg, and Cr.

Iron (Fe).

Among the trace elements monitored that are essential for the operation of living systems is Fe. Concentrations of dissolved Fe ranged from a maximum of 240 µg/l to undetectable levels during the period of study. A summary of Fe data for three of the stations sampled is shown below:

			Díssolved Fe µg/l (Kg Fe/day)		
Location	Period	<u>n</u>	Maximum	Minimum	Mean
Sta. I	Oct 69 - Mar 72	30	240	0	63
	Oct 69 - Mar 72	30	(7,840)	(0)	(1,192)
Sta. 3	Oct 69 - Mar 72	30	160	0	52
	Oct 69 - Mar 72	30	(8,516)	(0)	(1,114)
Sta. 9-10	Nov 69 - Mar 72	18	200	10	41
	Nov 69 - Mar 72	18	(9,935)	(136)	(1,320)

Although the mean concentrations of dissolved from in the river declined from 63 ug/l at station 1 to 41 ug/l at station 9 during the period extending from October 1969 through March 1972, a small increase (about 11 percent) in the mean daily loading between station 1 and stations 9-10 was observed.

Monitoring of total Fe during the last year of study indicated that the greater part of the Fe present in the river was in suspended or particulate form. A graph of Fe concentrations is shown in <u>figure 32</u>. No particular trend, other than that which might be attributed to down-stream dilution, is apparent in the data.

Manganese (Mn).

Manganese is essential to all organisms and plays a role in algal nitrogen metabolism and photosynthesis. Manganese concentrations ranged from 430 µg/l at station 1 to below detectable limits during the period from October 1969 through March 1972. A summary of the data for three of the locations sampled is shown below:

				1g/1 Mn	
Location	Period	Ū	Maximum	Minimum	Mean
Sta. 1	Oct 69 - Mar 72	30	430	0	46
Sta. 3	Oct 69 - Mar 72	29	250	0	34
Sta. 9-10	Nov 69 - Jun 71	10	390	0	55

Figure 32. Iron concentrations in the Kootenai River, 1967-1972.

Mean concentrations were 46 μ g/l at station 1, 34 μ g/l at station 3, and 55 μ g/l at station 9. A graph of the Mn data is presented in figure 33. Mn concentrations remained low except for a single analysis at stations 1 and 3 in February and Station 9 in March 1971.

Total Mn was sampled during the last year of the study. Anomalies occasionally appeared in analysis of total Mn which indicated levels lower than dissolved Mn.

Copper (Cu).

Although Cu is required by all organisms, any appreciable amount in the water may be lethal to fish and other aquatic life. For example, levels of 20 µg/1 Cu have been reported to be toxic to fish and, under

Below Libby Dam (Sta. 3)

Figure 33. Manganese concentrations in the Kootenai River, 1967-1972.

some conditions, 10 $\mu g/1$ have been found to be lethal to some aquatic organisms (Buhler, 1973). Cu concentrations in the Kootenai River ranged from below the detectable limit up to 30 $\mu g/1$. A summary of the data is shown below:

			Dissolved Cu ug/l		
Location	Period	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Oct 70 - Mar 72	18	6	0	1
Sta. 3	Oct 70 - Mar 72	18	17	0	2
Sta. 9	Oct 69 - Sep 70	5	30	4	10
	Oct 70 - Mar 72	13	2	0	1

With the exception of determinations of 30 μ g/l at stations 9-10 in November 1969 and 17 μ g/l at station 3 in October 1970, dissolved Cu concentrations did not exceed 8 μ g/l and only rarely exceeded 2 μ g/l during the last year and one-half of the study. Determinations of total Cu were infrequent but those that were done showed the river to contain, with one exception, less than 10 μ g/l.

Lead (Pb).

Dissolved Pb concentrations in the Kootenai River ranged from below detectable limits up to 23 μ g/l, and thereby did not appear to be present in sufficient quantity to be normally lethal to aquatic organisms. Under some conditions, however, the lethal concentration for Pb can be as low as 10 μ g/l (Buhler, 1973). A summary of the data is shown below:

			ug/l Dissolved Pb		
Location	<u>Period</u>	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Oct 70 - Mar 72	18	8	0	2
Sta. 3	Oct 70 - Mar 72	18	6	0	1
Sta. 9	Oct 69 - Sep 70	5	23	7	11
	Oct 70 - Mar 72	13	14	0	2

Dissolved Pb concentrations only rarely exceed 10 μ g/1. Concentrations of 1-2 μ g/1 were characteristic of the river during the last year and one-half of the study. The maximum concentration of total Pb was 60 μ g/1 but most total Pb values were under 10 μ g/1.

Zinc (Zn).

Zinc is required in minute amounts by algae. As with Cu, however, any appreciable amount in the water is toxic to aquatic life, particularly fish. Concentrations as low as 10 µg/l have been reported to be toxic to fish, although in general concentrations in excess of 90 µg/l are reported to be toxic in bioassay studies. Dissolved Zn concentrations ranged from below detectable limits up to 170 µg/l. A summary of the data is shown below:

			ug/1 Zn		
Location	Period	n	Maximum	Maximum	Mean
Sta. 1	Oct 70 - Mar 72	18	78	0	34
Sta. 3	Oct 70 - Mar 72	18	60	0	25
Sta. 9	Oct 69 - Sep 70	5 13	30 170	10 0	14 51

Zinc only rarely occurred in concentrations below the detectable limit and was most frequently found within the range of 10 to 80 μ g/1. While mean concentrations dropped from 34 μ g/1 at station 1 to 25 μ g/1 at station 3, occasional high values increased the mean to 51 μ g/1 at station 9. Determinations for total Zn were infrequent, but concentrations of total Zn were invariably under 50 μ g/1.

Molybdenum (Mo), Cobalt (Co), Boron (B), Vanadium (V)

Dispite being normally present in river water in extremely small quantities, Mo, Co, B, and V play an important role in the biological functions of organisms in the aquatic ecosystem.

Molybdenum is involved in algal nitrate assimilation and the fixation of molecular nitrogen. Concentrations of dissolved Mo in the Kootenai River ranged from 0-12 μ g/1 and averaged 1.6 μ g/1.

The most pronounced biological importance of Co is that it is a constituent of Vitamin B-12, an organic catalyst required by most aquatic organisms. Cobalt is generally found in fresh waters at concentrations less than $5 \mu g/1$. The maximum concentration of Co found in the Kootenai River was $9 \mu g/1$; the mean was less than $2 \mu g/1$.

Boron is generally found in freshwater in concentrations around 13 $\mu g/1$. It is an essential element for the growth of plants and some algae, although its full biological function is not known. Concentrations recorded in the Kootenai River ranged from undetectable to 102 $\mu g/1$, with a mean of 13 $\mu g/1$.

Vanadium has been reported to be essential to some algae and is a normal constituent of animal and plant matter, although its vital function is not certain. In freshwater, the concentration of V averages 1 μ g/1. The average concentration found in the Kootenai River was 0.2 μ g/1 and the maximum recorded was 1 μ g/1.

A summary of the Mo, Co, B, and V data for stations 1, 3, and 9-10 is presented below:

			Dissol	ved Mo, s	19/1
Location	Period	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Oct 70 - Mar 72	18	12	0	1.8
Sta. 3	Oct 70 - Mar 72	18	8	0	1.6
Sta. 9-10	Nov 69 - Jul 71	9	3	0	1.2
			Disso	lved Co,	µg/1
				otal, ug	
Location	Period	ū	<u>Maximum</u>	Minimum	Mean
Sta. 1	Oct 70 - Mar 72	18	4	0	0.8
	May 71 - Jul 71	3	(4)	(< 1)	(< 2)
Sta. 3	Oct 70 - Mar 72	18	9	0	1
	May 71 - Mar 72	11	(9)	(o)	(< 2)
Sta. 9-10	Nov 69 - Jul 71	10	3	0	1.5
				colved B,	
Location	Period	ú	(B	total, p	g/1)
Location	Period	ū	(B Maximum	Minimum	g/1) Mean
Location Sta. 1	Jun 69 - Sep 69	24	(B Maximum 60	Minimum 0	<u>Mean</u> 10
	Jun 69 - Sep 69 Oct 69 - Mar 72	-	(B Maximum	Minimum	g/1) Mean
	Jun 69 - Sep 69 Oct 69 - Mar 72 Jun 69 - Sep 69	24 30 16	(B Maximum 60 102 100	Minimum 0 0 0	Mean 10 17
Sta. 1	Jun 69 - Sep 69 Oct 69 - Mar 72	24 30	(B Maximum 60 102	Minimum 0 0	Mean 10 17
Sta. 1	Jun 69 - Sep 69 Oct 69 - Mar 72 Jun 69 - Sep 69 Oct 69 - Mar 72 Nov 69 - Jul 71	24 30 16 30	(B Maximum 60 102 100 41 20	total, u Minimum 0 0 0	Mean 10 17 14 10
Sta. 1	Jun 69 - Sep 69 Oct 69 - Mar 72 Jun 69 - Sep 69 Oct 69 - Mar 72	24 30 16 30	(B Maximum 60 102 100 41	Minimum 0 0 0	9/1) Mean 10 17 14 10
Sta. 1	Jun 69 - Sep 69 Oct 69 - Mar 72 Jun 69 - Sep 69 Oct 69 - Mar 72 Nov 69 - Jul 71	24 30 16 30	60 102 100 41 20 (20)	total, µ Minimum 0 0 0 0 (<10)	9/1) Mean 10 17 14 10 10 (<14)
Sta. 1	Jun 69 - Sep 69 Oct 69 - Mar 72 Jun 69 - Sep 69 Oct 69 - Mar 72 Nov 69 - Jul 71	24 30 16 30	60 102 100 41 20 (20)	total, u Minimum 0 0 0	9/1) Mean 10 17 14 10 10 (<14)
Sta. 1 Sta. 3 Sta. 9-10	Jun 69 - Sep 69 Oct 69 - Mar 72 Jun 69 - Sep 69 Oct 69 - Mar 72 Nov 69 - Jul 71 Sep 70 - Mar 71	24 30 16 30 10 5	60 102 100 41 20 (20)	Minimum 0 0 0 0 0 (~10)	9/1) Mean 10 17 14 10 (<14)
Sta. 1 Sta. 3 Sta. 9-10 Location	Jun 69 - Sep 69 Oct 69 - Mar 72 Jun 69 - Sep 69 Oct 69 - Mar 72 Nov 69 - Jul 71 Sep 70 - Mar 71	24 30 16 30 10 5	60 102 100 41 20 (20)	Minimum 0 0 0 0 (~10) olved V,	9/1) Mean 10 17 14 10 (<14) 10 (<14) 10 (<14)

Aluminum (A1), Lithium (Li), Selenium (Se), Nickel (Ni), Silver (Ag), Berylium (Be), and Cadmium (Cd).

Average concentrations of dissolved Al, Li, Se, Ni, Ag, Be, and Cd found in the waters of the Kootenai River were similar to those reported in the literature for river waters. The mean concentrations for these seven dissolved elements averaged for stations 1, 3, and 9-10 in the Kootenai River were 171, 5.6, 4, 3.2, 0.6, 1.0, and less than 0.3 μ g/1, respectively.

A summary of the Al, Li, Se, Ni, Ag, Be, and Cd data for three of the stations sampled is presented below:

			Dissol	ved Al, m	k/1
Location	<u>Period</u>	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Oct 70 - Mar 72	18	400	0	156
Sta. 3	Oct 70 - Mar 72	18	400	0	156
Sta. 9-10	Nov 69 - Jul 71	10	600	0	226
				ved Li, us	
Location	<u>Period</u>	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Oct 70 - Mar 72	18	25	0	5
Sta. 3	Oct 70 - Mar 72	18	22	0	6
Sta. 9-10	Jul 71	1	8	•	8
T	Pontod	_		lved Se, p	
Location	<u>Period</u>	<u>n</u>	Maximum	Minimum	Mean
Sta. 9-10	Nov 69 - Jan 72	11	13	0	4
			Dissol	ved N1, ne	/1
Location	Period	<u>n</u>	<u> Haximum</u>	<u> Minimus</u>	Mean
Sta. 1	Oct 70 - Mar 72	18	15	0	3
Sta. 3	Oct 70 - ar 72	18	4	0	2
\$ta. 9-10	Nov 69 - Jul 71	10	10	0	5.5
					/1
Location	<u>Period</u>	<u>n</u>	<u> Maximum</u>	<u> Hiniaua</u>	Mean
Sta. 1	Oct 70 - Mar 72	18	1	0	0.3
Sta. 3	Oct 70 - Nar 72	18	1	0	0.3
Sta. 9-10	Nov 69 - Jul 71	8	10	0	2.2
Location	<u>Period</u>	<u>n</u>	Dissol Maximum	ved Be, pa	/1 Mean
Sta. 1	Oct 70 - Mar 72	18	10	0	1.3
Sta. 3	Oct 70 - Mar 72	18	5	0	0.3
Sta. 9-10	Nov 69 - Jul 71	10	10	0	1.5

				ved Cd, ug/ 1 Cd, ug/1)	
Location	Period	ū	Maximum	Minimum	Mean
Sta. 1	Oct 70 - Mar 72	18	1	0	0
	May 71 - Jul 71	3	(1)	(~1)	(<1)
Sta. 3	Oct 70 - Mar 72	18	1	0	0
	May 71 - Mar 72	11	(2)	(<1)	(<1)
Sta. 9-10	Nov 69 - Oct 71	11	3	0	1.4
	Sep 70 - Jan 72_	4	(3)	(<1)	(<1.5)

Strontium (Sr), Barium (Ba).

Dissolved Sr concentrations observed ranged from 30-360 $\mu g/1$, with the average concentration at stations 1 and 3 being about 200 $\mu g/1$ and the average at station 9 being 138 $\mu g/1$. The maximum and mean values for Sr found in the waters of the Kootenai River are somewhat higher than those found in natural streams and lakes. Similarly, concentrations of Ba found in the Kootenai River were higher than those reported for natural lakes and streams. The concentration of Ba in the Kootenai River ranged from undetectable to 1 mg/l and averaged 83, 91, and 161 $\mu g/1$ at stations 1, 3, and 9, respectively.

A summary of the Sr and Ba concentrations monitored at stations 1, 3, and 9-10 is presented below:

				lved Sr, بر 1 Sr, برو(ا	
Location	<u>Period</u>	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	Oct 70 - Mar 72	18	300	30	197
Sta. 3	Oct 70 - Mar 72	18	360	40	200
Sta. 9-10	Nov 69 - Jul 71 Nov 70 - May 71	6 5	200 (140)	80 (60)	138 (98)
Location	Period	<u>n</u>	Dissol Maximum	ived Ba, us Minimum	/1 Mean
Sta. 1	Oct 70 - Mar 72	18	320	0	83
Sta. 3	Oct 70 - Mar 72	18	600	0	91
Sta. 9-10	Nov 69 - Jul 71	10	1,000	0	161

Mercury (Hg).

The dissolved Hg level monitored in the Kootenai River was, on the average, slightly in excess of 0.1 μ g/1. Excluding the single value of 1.0 μ g/1 at station 3 on 13 March 1972 and the single high value of 3.1 μ g/1 at stations 9-10 on 2 March 1972, the mean dissolved Hg for stations 1, 3, and 9-10 were 0.1, 0.1, and 0.3 μ g/1, respectively. Only a few determinations of total Hg were made and the level found was often less than the level of detection for the method of analysis used. A summary of the Hg data for stations 1, 3, and 9-10 is presented below:

			(tot	lved Hg, ; al Hg, ug/	
Location	Period	<u>a</u>	Maximum	Minimum	Meen
Sta. 1	Oct 70 - Mar 72	18	0.3	0	0.1
	Jan 71 - Jul 71	3	(<0.5)	(0)	(<0.3)
Sta. 3	Oct 70 - Mar 72	18	1.0	0	0.2
	May 71 - Mar 72	9	(1.2)	(<0.5)	(<0.6)
Sta. 9-10	Sep 70 - Mar 72	15	3.1	<0.1	<0.5
	Nov 70 - Jan 71	3	(0.3)	(0.2)	(0.3)

Arsenic (As).

Concentrations of dissolved As monitored in the Kootenai River were low. Mean values for stations 1, 3, and 9-10 were 4, 6, and 2 μ g/1, respectively. A summary of dissolved As for the three stations is presented below:

			Disso	lved As, M	R/1
Location	Period	<u>n</u>		Minimum	Mean
Sta. 1	Oct 70 - Mar 72	18	10	0	<4
Sta. 3	Oct 70 - Mar 72	18	40	0	6
Sta. 9-10	Nov 69 - Jan 72	12	10	0	<2

Chromium (Cr).

Concentrations of Cr monitored in the Kootenai River were very low and maximum values observed were well below levels reported to adversely affect aquatic life. The maximum total Cr concentration observed was 4 µg/l at station 7; the maximum discolved Cr and hexavalent Cr concentrations observed were 2 and 1 µg/l, respectively. A summary of Cr data for stations 1, 3, and 9-10 is presented below:

Location	Period	_		lved Cr. u	
LOCALION	FELIOG	<u>n</u>	Maximum	Minimum	Mean
Sta. 1	May 71 - Mar 72	11	0	0	0
Sta. 3	Oct 70 - Mar 72	17	2	0	0
Sta. 9-10	Nov 69 - Mar 72	9	2	0	0.6
			tot	al Cr. ue	/1
Location	<u>Period</u>	<u>a</u>	Maximum	Minimum	Mean
Sta. 9-10	Oct 70 - Jan 72	7	2	41	< 1.3
Location	Period	<u>n</u>	Hexave Meximum	Minimum	ue/l Mean
Sta. 1	Oct 70 - Mar 72	18	1	0	0
Sta. 3	Oct 70 - Mar 72	18	1	0	0

4.1.25 Methylene Blue Active Substances (MBAS).

Presence of MBAS indicates the occurrence of detergents in water. Concentrations of MBAS were sampled only at stations 1 and 3 during the last 1-1/2 years of study. Results indicated traces of detergents at

station 1 in November-December 1970 and January 1971, but no detectable amounts thereafter. Only on one occasion during monthly sampling from October 1970 - March 1972 at station 3 has MBAS been detected.

4.2 Bacteriological Data.

4.2.1 Coliform Bacteria.

Sampling for the presence of bacteria of the coliform group was done to obtain an indication of the sanitary quality of the waters of the river. Since coliform bacteria naturally inhabit the soil, vegetation, and water, as well as being normal inhabitants of fecal discharges, the abundance of coliform bacteria is not solely adequate for determination of fecal contamination.

			Coli	forms/100 t	1
Location	Period	<u>n</u>	Maximum	Minimum	Mean
Sta. 7	Mar 68 - Sep 69	17	3,600	8	680
	Oct 69 - Mar 72	28	830	1	121
Sta. 8	Mar 68 - Sep 69	12	2,500	55	920
	Oct 69 - Mar 72	28	3,300	16	72 6
Sta. 9-10	Mar 68 - Sep 69	15	1,400	10	565
	Oct 69 - Mar 72	27	2.400	17	398

Coliform counts ranged from 3,600/100 ml at station 7 in June 1968 to 1/100 ml at the same station in March 1971. Maximum concentrations correlate with periods of high flows. Mean numbers increased between stations 7 and 8 but declined at stations 9-10 during the study.

4.2.2 Fecal Coliforms.

Analyses for fecal coliforms were added to the program at stations 7, 8, and 9 in October 1969. A summary of the results is shown below:

			Fecal Co	liforms/10	00 ml
Location	Period	n	Maximum	Minimum	Mean
Sta. 7	Oct 69 - Mar 72	29	120	0	19
Sta. 8	Oct 69 - Mar 72	18	260	1	63
Sta. 9	Oct 69 ~ Mar 72	19	215	1	39

Coliforms of fecal origin ranged from 0 to 260/100 ml. Mean concentrations of 19/100 ml at station 7 increased to 63/100 ml at station 8 and then dropped to 39/100 ml at station 9.

4.3 Bottom Fauna.

Results from the 4 years of sampling involving 230 bottom samples and 50 cylindrical substrate samples showed that the invertebrate population of the Kootenai River was, for all practical purposes, dominated by insects. Only two other major groups of invertebrates were found to be present: Gastropods (snails) probably of the genus Physa and aquatic earthworms and leeches of the Phylum Annelida. These organisms occurred only rarely and formed a rather insignificant part of the number and biomass of aquatic invertebrates present.

Table 6. Listing of insects collected from the Kootenai River, 1968-1971.

Order	Suborder	Family	Swhfamily	Genus
Plecoptera	Holognatha	Pteronarcidae		Pteronarcys
	(=Filipalpia)	Nemouridae	Considere	Pteronarcella Capnia
		WENDALIGEE	Capilinae	Isocapnia
			Teententemedae	Brachyptera
		•	Taeniopteryginae Nemourinae	Nemoura
	Curanal Lamentha	Paula de das		Isogenus
	Systellognatha	Perlodidae	Isogeninae	
	(=Setipalpia)		Tananlinea	Arcynopteryx
			Isoperlinae Perlodinae	Isoperla Diura
		Perlidae	Acroneurinae	Acroneuria
		Lettrose	Actoneuringe	Classenia
		Managarii daa	Chlorenesidaes	Allerperia
P-1		Chloroperlidae Baetidae	Chloroperlinae Baetidae	Baetis
Ephemeroptera		pastidas	Descrides .	Callibactis
		01-h11	C(-1	
		Siphlonurid ae	Siplonurinae 1/	Ameletus
			M-1	Parameletus
		Ephemerellidae	Ephemerellinae 1/	Ephemerella
		Leptophlebiidae	Leptophlebiinae $\underline{1}$ /	Leptophlebia
				Paraleptophelb:
		Heptageniid ae	Heptageniid ae	Heptagenia
				Rhithrogena
				Cinygmula
		•		Epeorus
				Subgenus-Iron
Trichoptera		Hydropsychidae		Hydropsyche
				Parapsyche
				Arctopsyche
				Cheumatopsyche
		Brachycentridae		Brachycentrus
		Glossosomatidae		Glossosoma
		Rhyacophilidae		Rhyacophila
		Limnephilidee		Neothreama
Diptera	Nematocera	Tendipididae (=Chi	ronomidae)	
		Tipulid ae T	ipulinae	Tipula
				Holorusia
			Limoniinae	Hexatoms
		Simuliidae (=Mel	lusinidae)	Simulium
		Tanyderidae		
	Brachycera	Phagionidae (=La	eptidae)	Atherix
		Empididae		
	•	Tabanidae		
Odonata	Zygoptera	Agrionidae		Agrion
Coleoptera	Polyphaga	Elmidae		
.	-	Hydrophilidae		Hydrophilus
	Adephaga	Dytiscidae		
	• •	Gyrinidae		
Megaloptera		Sialidae		Sialia
Hemiptera		Corixidae		

1/Classified under family Baetidae in Usinger, 1963.

4.3.1 Insects.

A listing of the aquatic insects collected and their taxonomic affinities is shown in table 6. While 51 individual taxa representing eight major insect orders were found to be present, only Plecoptera (stoneflies), Ephemeroptera (mayflies), Trichoptera (caddisflies), and Diptera (true

flies) were common. Taxa within these four orders made up over 99 percent of the insects in a sample composed of more than 100,000 insects weighing almost a kilogram (2.2 lb). The remaining 1 percent consisted of Odonata (dragon flies), Coleoptera (beetles, mostly of the family Elmidae), Megaloptera (alderflies), and Hemiptera (aquatic bugs, all in the family Corixidae).

For purposes of clarity, discussion of the results will be confined only to the first four insect orders, with results of bottom and cylindrical substrate sampling being treated separately.

4.3.2 Bottom Sampling.

The 230 bottom fauna samples collected between 1968 and 1971 contained a total of 75,217 insects weighing 713.27 g. This is an average of 327 insects weighing 3.1 g/sq m (equivalent to an insect standing crop of about 300 lb/acre). Summaries of bottom fauna are presented in the appendix, tables 50 through 64.

The insect population, considering all areas combined, increased in both numbers and weight during the period of study. Numbers of insects almost doubled, increasing from a mean of 2,159/sq m in 1968 to 4,124/sq m in 1971. Weight of insects more than tripled, rising from a mean of 19.3 g/sq m to 58.7 g/sq m during the same period.

The trend for an increasing insect population was evident at each of the four sampling locations. Insect populations at the two sampling stations above Libby Dam (stations 1 and 2) appeared to be quite similar, particularly in terms of weight, with 4-year means of 3,918 and 4,582 insects, respectively, weighing 43.7 and 45.9 g/sq m, respectively. Combined, the data from these two stations show an increase from a mean of 2,673 insects weighing 28.8 g/sq m in 1968 to 4,996 insects weighing 78.5 g/sq m in 1971. This is an increase of 187 percent in numbers and 273 percent in weight between 1968 and 1971.

Insect populations at the two stations below Libby Dam were smaller than at the two stations above Libby Dam with 4-year means of 3,027 and 2,553 insects weighing 23.9 and 20.1 g/sq m, respectively. Combined, the data from stations 3 and 4 show an increase from a mean of 1,645 insects weighing 9.9 c/sq m in 1968 to 3,253 insects weighing 38.8 g/sq m in 1971. This is an increase of 198 percent in numbers and 392 percent in weight between 1968 and 1971.

Comparison of the 4-year mean at stations 1 and 2 (4,253 insects weighing 48.4 g/sq m) with the 4-year mean for stations 3 and 4 (2,788 insects weighing 22.0 g/sq m) indicates that the insect population below Libby Dam averaged 66 percent of the population above the dam in terms of numbers and 45 percent in terms of weight.

The similarities and differences between the control and test areas, along with variations in numbers and biomass that occur within the course of each year, are shown in figure 34. Large temporal variations can be noted not only within areas, but between areas. Accepting the fact that insect population data can be highly variable, there appears to be relatively good agreement between the data collected at stations

Figure 34. Mean number and weight of insects per square meter at four stations in the Kootenai River, 1968-1971.

1 and 2 and between the data collected at stations 3 and 4. The trend of the insect population at stations 1 and 2, when compared with stations 3 and 4. indicates that some factor, or factors, prevented the populations at stations 3 and 4 from reaching their full potential. This is particularly noticeable in 1970 and 1971.

Plecoptera.

Plecoptera (stoneflies) composed 16 percent of the total number of insects and 29 percent of the total by weight. The mean for all samples was 571 stoneflies weighing 9.6 g/sq m.

Combined, the data from stations 1 and 2 show a mean of 672 stone-flies averaging 13.4 g/sq m while stations 3 and 4 had a mean of 471 stoneflies weighing 5.8 g/sq m. This indicates that the stonefly population below Libby Dam was about 70 percent of the size of the stonefly population above Libby Dam in terms of numbers and 43 percent in terms of weight.

Figure 35. Mean number and weight of Plecoptera per square meter at four locations in the Kootenai River, 1968-1971.

While a generally increasing trend can be noted in the sample means plotted for the stonefly population, as shown in figure 35, the increase is neither as large nor as consistent as that for the insect population as a whole. Number of stoneflies at stations 3 and 4 apparently declined after 1969, but biomass continued to increase. Indications that this decline was probably not of a permanent nature can be seen in the fact that over 2,100 stoneflies/sq m were found at station 3 in November 1971.

A remarkable feature of the data is the mean of 3,771 stoneflies/sq m collected at station 2 in December 1969. These samples were dominated by winter stoneflies of the genus <u>Capnia</u> and <u>Brachyptera</u> which, due to their small size, were taken in numbers only during this period of the year.

Five stonefly families, containing 13 genera, were found to be present. While an attempt was made throughout the study to identify nymphs to the generic level, identification, particularly of the early instars, was difficult. In some cases confusion appears to have existed in the identification of families. For this reason, no attempt has been made to evaluate the composition of the stonefly population other than to say that the smaller population below Libby Dam seems to be due to a factor, or factors, which affected the order as a whole as opposed to the elimination or reduction of a particular family.

Figure 36. Mean number and weight of Ephemeroptera per square meter at four stations in the Kootenai River, 1968-1971.

Ephemeroptera.

Ephemeroptera, the mayflies, composed 16 percent of the total number of insects, the same percentage as the stoneflies, but due to their small size they made up only 7 percent of the total weight. The mean for all samples was 554 mayflies weighing 2.2 g/sq m.

Combining the data from stations 1 and 2 shows a mean of 680 may-flies weighing 2.6 g/sq m while stations 3 and 4 had 428 mayflies weighing 1.8 g/sq m. This indicates that the mayfly population below Libby Dam was about 70 percent of the size of the mayfly population above the dam in terms of both numbers and weight.

There was a trend between 1968 and 1969 for an increasing mayfly population at all sampling sites (<u>figure 36</u>). The population at stations 2, 3, and 4 reached the peak in 1969 and progressively declined in 1970 and 1971, while the population at station 1 did not reach its peak until 1970. While relatively good populations were maintained at stations 3 and 4 throughout 1970 and 1971, there is some indication that fall populations failed to reach their full potential as indicated by the control stations.

Five mayfly families, including 11 genera, were found to be present.

Baetis constituted 76 percent of the total number of mayflies present and occurred at an overall density of 420/sq m. The two sampling loca-

Figure 37. Mean number and weight of Trichoptera per square meter at four stations in the Kootenai River, 1968-1971.

tions below Libby Dam average 317 <u>Baetis</u>/sq m compared to an average of 520/sq m at the two stations above the dam. This indicates that <u>Baetis</u> were considerably more abundant above the project than below. <u>Ephemerella</u>, which made up 11 percent of the total number of mayflies taken, averaged 62/sq m, with the population below the dam being 77 percent of the size of that above the dam.

Trichoptera.

Trichoptera (caddisflies) composed 27 percent of the total numbers of insects and nearly half (49 percent) of the sample by weight. The mean for all samples was 960 caddisflies weighing 16.4 g/sq m.

Combined, the data from stations 1 and 2 show a mean of 1,276 caddisflies/sq m with a weigh of 22.6 g/sq m, while stations 3 and 4 had a mean of 643 caddisflies/sq m with a weight of 10.1 g/sq m. This indicates that the caddisfly population below Libby Dam was about 50 percent of the size of the caddisfly population above Libby Dam in terms of numbers and 45 percent in terms of weight.

Rather extraordinary increases in both numbers and weight that occurred throughout the course of the study can be seen in figure 37.

Figure 38. Mean number and weight of Diptera per square meter at four stations in the Kootenai River, 1968-1971.

The caddisfly population above the dam, and particularly at station 2, increased by many orders of magnitude between 1968 and 1971, with individual samples taken in October 1970 and 1971 totaling more than 6,000 caddisflies/sq m with sample means of from 3,000 to 4,000/sq m. With few exceptions, caddisflies were more abundant at stations 1 and 2 than at stations 3 and 4 in 1970 and 1971, again indicating the existence of some factor affecting the population below the dam site.

Five caddisfly families were noted during the course of the study and, with the possible exception of the Limnephilidae which occurred only during the early years of study, no substantive changes have been noted in the diversity of the population. Representatives of the family Hydropsychidae made up 94 percent of the caddisfly population, with the genus Hydropsyche dominating. The major trends in the population are therefore due to fluctuation occurring among the members of this family.

Diptera.

Diptera, the true flies, composed 41 percent of the total number of insects, but, due to the small size of the dominant family (Tendipididae), members of this insect order made up only 15 percent of the sample by weight. The mean for all samples was 1,428 Diptera weighing 5.2 g/sq m.

Combined, the data from stations 1 and 2 show a mean of 1,613 Diptera weighing 6.1 g/sq m, while stations 3 and 4 had a mean of

1,243 Diptera weighing 4.3 g/sq m. This indicates that the Diptera population below Libby Dam was about 77 percent of the size of the population above Libby Dam in terms of numbers and 70 percent in terms of weight.

Population trends for Diptera are shown in figure 38. Although Diptera biomass exhibits an increasing trend, the population in terms of numbers seems to be stable. Only numbers of true flies at stations 1 and 3 appear to have increased. The most notable feature of the data is the relatively similar population levels found in both control and test areas.

Seven families were found to be present, but the most important by far were members of the family Tendipididae (=Chironomidae), or midges, which made up 97 percent of the total Diptera.

4.3.3 Cylindrical Substrate Sampling.

A total of 50 cylindrical substrate samples were collected during the years 1968 and 1969 containing 29,934 insects weighing 228.23 g (thereby averaging 539 insects weighing 4.6 g/sample). Summaries of the cylindrical substrate sampling data are contained in the appendix, tables 65 through 67.

The number of insects/samples increased from 374 in 1968 to 679 in 1969 while at the same time biomass decreased from 6.3 g/sample in 1968 to 3.1 g/sample in 1969. Insects at station 3 below the dam occurred in considerably larger numbers than at the two stations above the dam during both years of study. In 1968, station 3 averaged 754 insects/sample and this increased to 1,161 insects/sample in 1969. Biomass, however, decreased from 12.7 g in 1968 to 4.9 g/sample in 1969. Numbers increased from 131 insects/samples at stations 1 and 2 in 1968 to 438 insects/sample in 1969. Biomass, however, remained stable, averaging 2.1 g/sample in 1968 and 2.2 g/sample in 1969. Figure 39 shows the average number and weight of insects taken at each of the three sampling stations.

It is evident that unusually large numbers of caddisflies dominated the insect population and constituted 58 percent of the total number of insects collected. The dominating influence of caddisflies was particularly evident at station 3 both in September 1968 and September 1969 (figure 40). The three September 1968 samples averaged 1818 caddisflies weighing 31.3 g/sample and the three September 1969 samples averaged 1614 caddisflies weighing 8.74 g/sample. A notable feature of the data is the sharp insect population decline in the samples taken late in the year.

Population trends for Plecoptera are shown in <u>figure 41</u>. Plecoptera which averaged 35/sample in 1968 increased to 105/sample in 1969, largely due to the large numbers occurring at stations 2 and 3. Somewhat similar trends are shown for Ephemeroptera (<u>figure 42</u>) and Diptera (<u>figure 43</u>).

Figure 39. Mean number and weight of insects per cylindrical substrate sample at three stations in the Kootenai River, 1968 and 1969.

Figure 40. Mean number and weight of Plecoptera per cylindrical substrate sample at three stations in the Kootenai River, 1968 and 1969.

Figure 41. Mean number and weight of Ephemeroptera per cylindrical substrate sample at three stations in the Kootenai River, 1968 and 1969.

Figure 42. Mean number and weight of Trichoptera per cylindrical substrate sample at three stations in the Kootenai River, 1968 and 1969.

Figure 43. Mean number and weight of Diptera per cylindrical substrate sample at three stations in the Kootenai River, 1968 and 1969.

5.0 DISCUSSION

The Kootenai River is the second largest tributary of the Columbia River, with a discharge of nearly 800 cu m/sec (28,200 c.f.s.). The river, which has a length of about 780 km (485 miles) and a basin of almost 50,000 sq km (19,300 sq miles), is shared by Canada and the United States. Most of the river and its basin, along with the source and mouth of the river, lie in Canada. About one-third of the river's length and one-quarter of the basin area lie within the United States. The portion of the basin within the United States produces about one-fifth of the water discharged at the river mouth.

Practically all of the water that passes the background station at Rexford, near the Canadian-United States border, originates in Canada. At the Libby Dam site, about 90 percent of the water originates in Canada. The Canadian contribution of runoff in the river declines to 63 percent at the downstream border station near Porthill, Idaho. The water quality characteristics at the upstream station are, thereby, largely determined within the Canadian portion of the basin. Some of the many factors affecting water quality in the basin are delineated in previous reports (U.S. Army Corps of Engineers, 1969, 1970 and 1971) and by Shurr (1969) and Northcote (1972, 1973). Factors affecting water quality in the Canadian portion of the Kootenai River are discussed in the Canadian report (Crozier and Leinweber, 1975) published concurrent with this

report to document the water quality of the river prior to impoundment by Libby Dam.

River discharge for the study period was 106 percent of normal, based on the period 1910-1972. River discharge of 118 to 120 percent of normal characterized the years 1967, 1969, and 1971. The year 1968 was a normal year in respect to discharge and 1970 was a low water year having 75 percent of normal flow.

Wide seasonal fluctuations in discharge are characteristic of the river. Flows entering the United States between calendar years 1967-1971 ranged from 37 to 1994 cu m/sec (1,300 to 70,376 c.f.s.) with a mean of 309 cu m/sec (10,906 c.f.s.). The range at Porthill is 74 to 2,784 cu m/sec (2,620 to 98,300 c.f.s.) with a mean of 488 cu m/sec (17,247 c.f.s.). Roughly, 70 percent of the river's mean annual flow occurs during the spring and early summer. These fluctuations have rather dramatic effects upon the quality of the water. Suspended sediment concentrations, which are low during periods of base flow, increase during high water, while dissolved solids concentrations, which are high during base flow, decrease during high flows. With the bulk of the discharge occurring during the months of May, June, and July, dissolved and suspended loadings increase and are higher during that period than in the entire remaining 9 months of the year.

During the preimpoundment study period, the Kootenai River was a fast-flowing, cold-water river containing moderately hard to hard water of the calcium bicarbonate type. The river was quite fertile, as indicated by the high dissolved solids content and a large and diverse aquatic insect population. Dissolved oxygen concentrations invariably remained at or near saturation. High dissolved oxygen concentrations, along with the relatively low observed values for biochemical oxygen demand, indicate that the river was effective in assimilating organic loads without respiratory stress to aquatic life. For about 8 months of each year, the water was clear, transparent, and almost colorless. During periods of high discharge the river picked up a large suspended sediment load and became turbid and the true color increased. Increases could also be detected in total coliforms during periods of high water, but human contamination was not indicated since fecal coliforms were generally low (and within Montana's water quality standards for the river). The pH of the river water was often rather high for natural waters and the free carbon dioxide content, which strongly influences the pH, was generally low. The water, with bicarbonate as the dominant anion, had a high alkalinity which gave the river a high "buffering capacity."

Dissolved solids content of streams entering the Kootenai River from the Cabinet and Purcell Mountains was lower than that of the Kootenai and the river became more dilute as it traversed the United States; there was, however, an overall increase in the total dissolved solids load. This same phenomenon was noted to occur with most of the major ions as well as with suspended sediments.

An important feature of the study was the detection of an abrupt decrease in a number of water quality parameters in the Kootenai River in September 1968 which could be attributed to treatment of an industrial discharge entering the St. Mary River, a tributary of the Kootenai

River in British Columbia. The decrease was observed to occur in the concentrations of Ca, SO_4 , F, and PO_4 and was reflected in specific conductance and hardness determinations.

Concurrent with the reduction of the above stated water quality parameters was an observed change in the aquatic insect population. The population of aquatic insects increased between 1968 and 1969 and remained high throughout the remainder of the study. Such strongly suggests that the chemical changes in the river, following the waste water treatment of the industrial discharge in British Columbia, had a beneficial effect on the insect population.

Concentrations of trace elements monitored in the river were low or within the range characteristic of natural waters, except for Zn, Ba, and Sr. Only Zn, however, was observed in concentrations which may have, at times, exerted sublethal effects on aquatic organisms in the river.

The high F concentrations observed during the early part of the study were of concern as the concentration approached and, at times, exceeded, particularly at low flow, the level considered to be toxic to aquatic life (McKee and Wolf, 1963). As stated above, the F concentration significantly decreased after 1968.

Ammonia concentrations observed in the river were often very high; levels as high as 0.93~mg/l were observed. The mean level at the upstream border station was 11 mg/l. The high observed concentrations of NH $_3$ indicate that NH $_3$ toxicity may have been a problem in the upper reaches of the river. The high pH of the Kootenai River would have tended to increase the toxicity of ammonia.

Na and Cl concentrations increased during the study period. While the reason for the increase is not entirely clear, increases in industrial and domestic wastes are suspect.

Concentration of P in the Kootenai River as it entered the United States was high, particularly in 1967 and 1968. Mean Ortho-P concentrations for 1967, 1968, 1969, 1970 and 1971 were 0.52, 0.42, 0.08, 0.12, and 0.06 mg/l, respectively. Total P was not monitored at the upstream border station until mid-1969; the mean concentration for 1969-71 ranged from 0.18 to 0.21 mg/l. The high P concentrations in the river are attributable to the waste discnarges of a fertilizer plant to the St. Mary River in British Columbia (Northcote, 1972, 1973). Despite the waste water controls of the fertilizer industry in 1968, the levels in the river remained high.

Lower mean total and Ortho-P concentrations were characteristic of the downstream stations as the result of dilution from low P runoff waters to the river, to a loss of P by sedimentation processes, and to uptake by aquatic organisms.

Ortho-P loading of the Kootenai River entering the United States is estimated to have been in excess of 3,000 metric tons/year in 1968, declining to around 785 metric tons/year for the remainder of the study period. Northcote (1973) indicates that the PO₄-P loading of the Kootenai River below its confluence with the St. Mary River has approached

1,000 metric tons/annum since the 1960's. Total P loading for 1970 and 1971 is estimated to have been in the order of 2,000 metric tons/year.

Total N concentrations of the Kootenai River entering the United States were high. The mean for September 1969 through March 1972 was 0.41 mg/l. On the average, organic -N, NO₃-N, NO₂-N, and NH₃-N were 34, 38, 2, and 26 percent of total N, respectively. Upon leaving the United States, the percent of total N in the river that was organic increased to 39 percent, while the percent that was NO₃-N and NH₃-N decreased to 36 and to 23 percent, respectively.

The N loading of the Kootenai River entering the United States is estimated to have been in excess of 3,000 metric tons/year for 1970 and 1971.

Concern for the development of eutrophic conditions in the reservoir (Lake Koocanusa) formed by impoundment of the Kootenai River by Libby Dam, as a result of high P concentrations and loadings in the river, has been expressed since initiation of the preimpoundment study. According to the best available guidelines on permissible P loading for lakes (Vollenweider, 1968 1973), Lake Koocanusa will be receiving sufficient P to place it well into the category of eutrophic lakes if the P loading of the Kootenai River remains consistent with that found for 1969-1972. The annual P loading expressed per unit lake surface area would be in the order of 10 g/m^2 , the estimate being based on a conservative estimate of total P loading, 1,500 metric tons/yr, and an average lake elevation of 738 meters (2,420 ft) with an average surface area of 1.5 x 10^8 m^2 (3.75 x 10^3 acres). For a lake with the mean depth (43 m (113 ft)) and retention time (0.5 yr) expected for Lake Koocanusa, the "permissible" and "dangerous" P loading levels in regard to eutrophication given by Vollenweider (1973) are 1.0 and 2.0 g/m^2 yr, respectively. The total P loading estimated for Lake Koocanusa will be an order of magnitude greater than the "permissible" guideline presented by Vollenweider and the dissolved P loading will be approximately 4 times the guideline for "permissible" loading in respect to eutrophication. The dissolved portion would provide an immediate source of P for algal growth.

The critical concentration of N in a lake at the beginning of the growing season above which excessive algae blooms may be expected to occur is 0.2-0.3 mg/l when P concentrations are from 0.01 to 0.02 mg/l (Sawyer, 1947; Mackenthun, 1965; Vollenweider, 1968). The mean N concentration of the Kootenai River upon entry into the United States was 0.41 mg/l while the P concentration was an order of magnitude greater than the critical 0.02 mg/l value. The "permissible" and "dangerous" N loading level in respect to potential development of eutrophic conditions for a lake with the mean depth expected for Lake Koocanusa is predicted at 4 g/m² yr and 8 g/m² yr, respectively (Vollenweider, 1968). The estimated loading to Lake Koocanusa, based on river loading for the study period, is 20 g/m² yr, of which about two-thirds is inorganic N.

Although the exact biological response of a lake to nutrient enrichment is exceedingly difficult to determine, the state of the art does allow statements regarding a lake if it is threatened. It is noteworthy that Vollenweider's loading criteria in relation to development of eutrophic conditions in a lake are in excellent agreement with

limnological experience. Lake Koocanusa can be expected to develop eutrophic conditions, particularly nuisance algae blooms, if P and N loading remains consistent with that found during this study.

The high nutrient content of the Kootenai River has resulted in eutrophic conditions developing in Kootenay Lake. The principal inflow to Kootenay Lake is the Kootenai River and, according to Northcote (1972, 1973), the accelerated eutrophication of Kootenay Lake is attributable to the single industrial outfall on the St. Mary River which is the major source of P in the Kootenai River. Northcote reports that the biological changes that have occurred in Kootenay Lake since the industry began to discharge to the St. Mary River have been increased algae abundance with extensive blooms occurring in some years and localized blooms on others. The extensive algae blooms have been reported to impart offensive odor and taste to the water and to fish.

The effect of dam construction on the river water quality appeared to be limited to increases in suspended sediment and turbidity. During the study period, the increase in suspended sediment between the sampling stations upstream and downstream of the dam site averaged around 10 percent. For short periods of time, considerable increases in suspended sediment did occur, however, particularly during the periods of high discharge in 1968 and 1969. The two major events which led to large increases in suspended sediment and turbidity were the river diversions for the first and second stage cofferdam construction.

The aquatic insect population for 14.5 km (9 miles) below the Libby Dam site was found to be smaller than the population above the dam site. The supression of the insect population below the dam is attributed to the increase in suspended sediment caused by construction activities related to the Libby Dam Project.

6.0 REFERENCES

- American Public Health Association, 1973. Standard Methods for the Examination of Water and Wastewater. 13th Edition.

 American Public Health Association. Washington, D.C.
- American Society for Testing and Materials, 1966. 1966 Book of ASTM Standards. Part 23. Industrial Water; Atmospheric Analysis. American Society for Testing and Materials. Philadelphia, Pa.
- Anderson, J. B., and William T. Mason, Jr. 1966. The use of limestone-filled samplers for collecting microinvertebrates from large streams. Federal Water Pollution Control Administration, Water Pollution Surveillance System,

 Application and Development Report No. 17, 19 pp.
- Brown, Eugene, M.W. Skougstad, and M. J. Fishman. 1970. Methods for Collection and Analysis of Water Samples for Dissolved Minerals and Gases. U.S. Department of the Interior. Geological Survey, Book 5, Chap Al, 160 pp.

- Buhler, Donald R. 1973. Environmental Contamination by Toxic Metals.

 <u>In:</u> Heavy Metals in the Environment. Oregon State
 University, Water Resources Research Institute,
 Jan. 1973, 203 pp.
- Crozier, R. J., and L. R. Leinweber. 1975. Libby Dam Pre-Impoundment Study, British Columbia Pollution Control Branch, Nelson, B.C., Canada.
- Federal Water Pollution Control Administration. 1969a. Analytical Techniques for the National Eutrophication Research Program. U.S. Department of the Interior, 141 pp.
- Federal Water Pollution Control Administration. 1969b. FWPCA Methods for Chemical Analysis of Water and Wastes. U.S.

 Department of the Interior, Division of Water Quality Research, Analytical Quality Control Laboratory, Cincinnati, Ohio. 280 pp.
- Guy, Harold P., and Vernon W. Norman, 1970. Field Methods for Measurement of Fluvial Sediment. U.S. Department of Interior, Geological Survey, Book 3, Chapter C2, 59 pp.
- Mackenthun, K. M., 1965. Nitrogen and Phosphorus in Water. U.S.

 Department of Health, Education and Welfare, Public
 Health Service.
- Mason, William T., J. B. Anderson, and George E. Morrison. 1967. A limestone-filled, artificial substrate sampler-float unit for collecting microinvertebrates in large streams. Prog. Fish Cult., 29 (2):74.
- McKee, J. E., and H. W. Wolf, Eds. 1973. Water Quality Criteria. Second Edition, State Water Quality Control Board, Publication No. 3-A. 548 pp.
- Mueller, Jack F., and Theodore J. Wirth. 1970. Comprehensive Area-Wide
 Water and Sewer Plan Lincoln County 1970. State
 of Montana, Volume I. Theodore Wirth and Associates,
 Environmental Planning Consultants, Billings, Montana,
 and Chevy Chase, Maryland, and Mueller Engineering,
 Billings, Montana.
- Northcote, T. G. 1972. Some Effects of Mysid Introduction and
 Nutrient Enrichment on a Large Oligotrophic Lake
 and Its Salmonids. Verh. Internat. Verin. Limnol.
 18:1096-1106.
- Northcote, T. G. 1973. Some Impacts of Man on Kootenay Lake and Its Salmonids. Great Lakes Fishery Commission, Technical Report 25, 46 pp.
- Rainwater, F. H., and L. L. Thatcher. 1960. Methods for Collection and Analysis of Water Samples. U.S. Department of the Interior, Geological Survey, Water-Supply Paper 1454, 301 pp.

- Sawyer, C. N. 1947. Fertilization of Lakes by Agricultural and Urban Drainage. J. New England Water Works Assoc. 61(2): 109-127.
- Schurr, R. C. 1969. The Columbia River Headwaters and Water Quality A Theoretical Study. M. Sc. Thesis, Dept. Civil Engineering, University of Washington, 87 pp.
- U.S. Army Corps of Engineers. 1969. A Progress Report on the Libby Dam
 Project Water Quality Investigations. Department of
 the Army, Seattle District, Corps of Engineers.
 October 1969. 19 pp.
- U.S. Army Corps of Engineers. 1970. Water Quality Investigations A
 Second Progress Report. Department of the Army,
 Seattle District, Corps of Engineers. September 1970.
 46 pp.
- U.S. Army Corps of Engineers. 1971. Water Quality Investigations A Third Progress Report. Department of the Army, Seattle District, Corps of Engineers. September 1971. 17 pp.
- Usinger, R. L., 1963. Aquatic Insects of California, with Keys to North American Genera and California Species. University of California Press, Berkeley.
- Vollenweider, R. A., 1968. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication.

 Organization for Economic Cooperation and Development, Paris.
- Vollenweider, R. A., 1973. Input Output Models. Manuscript submitted for publication. Canada Centre for Inland Waters, Ontario, Canada.
- Waters, Thomas F., and Robert J. Knapp. 1961. An improved stream bottom sampler. Trans. Am. Fish Soc., 90(2):225-226.
- White, E. L., 1960. Kootenai River Basin, Idaho-Montana. Reconnaissance Report. U.S. Dept. Interior, Bureau of Reclamation, Region I, Boise, Idaho. 69 pp.

APPENDIX: WATER QUALITY DATA AND RELATED INFORMATION FOR THE UNITED STATES REACH OF THE KOOTENAI RIVER FOR THE PERIOD OCTOBER 1967 THROUGH MARCH 1972

Figure 1. Duration curves, Kootena River at Libby, Montana.

Figure 2. Mean daily water temperatures in the Kootenai River, 1967.

Figure 3. Mean daily water temperatures in the Kootenai River, 1968.

Figure 4. Mean daily water temperatures in the Kootenai River. 1969.

Figure 5. Mean daily water temperatures in the Kootenai River, 1970.

Figure 6. Mean daily water temperatures in the Kootenai River, 1971.

Figure 7. Suspended sediment concentrations in the Kootensi River, 1968.

Figure 8. Suspended seiiment concentrations in the Kootenai River, 1969.

Below Libby Dem (Sta. 3) 400 300 200 100 0 Jan Feb | Mar Apr Hay Jun Jul Aug Sep Oct Nov Dec

Porthill-Copeland (Sta. 9-10) 400 300 200 100 0 Mar Apr Jun Jul Aug | Sep | Oct | Hov | Dec

Figure 9. Suspended sediment concentrations in the Kootenai River, 1970.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

بعارات فالمعادية والمالية والمراجع المصيح الراجع

.

Figure 10. Suspended sediment concentrations in the Kootenai River, 1971.

Figure 11. Suspended sediment concentrations in the Kootenai River, 1972.

Table 1. Drainage Area and Discharge at Selected Gaging Stations in the Kootenai River Basin.

Location	Drainage Area Sq. Mi.	Discharge Mean ann. c.f.s.	Runoff in/yr	Runoff ac-ft/yr x 103	Period of Record
Kootenay River Newgate, B.C.	7,660	10,520	18.65	7,622	Oct 30 - Mar 72 (41 years)
Tobacco River Eureka, Mont.	077	285	8.80	206.5	Sep 58 - Sep 72 (14 years)
Kootenal River Rexford, Mont.	8,7 20	10,130	16.34	7,339	Mar 29 - Nov 40 Oct 67 - Sep 71 (15 years)
Kootenal River Warland, Mont.	8,892	11,920	18.20	8,636	Jul 61 - Sep 71 (10 years)
Kootenal River Libby Dam, Mont.	8,985				Dec 68 - Sep 72
Fisher River Libby, Mont.	838	909	9.79	437	Sep 67 - Sep 72 (5 years)
Kootenai River Libby, Mont.	10,240	12,170	16.14	8,817	Oct 10 - Sep 72 (62 years)
Yaak River Troy, Mont.	766	076	16.67	681	Oct 10 - Sep 16 Mar 56 - Sep 72 (16 years)
Kootenai River Leonia, Id.	11,740	14,060	16.26	10,190	Mar 28 - Sep 72 (44 years)
Moyte River Eileen, Id.	755	888	15.98	643	Oct 25 - Sep 72 (47 years)
Kootenai River Copeland, Id.	13,400	15,750	15.95	11,410	Oct 27 - Sep 72 (43 years)
Kootenai River Porthill, Id.	13,700	16,120	15.98	11,680	May to Jul 04 & Oct to Mar 28 & Apr 28 to Sep 72 (44 years)

Source: U.S. Geological Survey, 1972. Water Resources Records for Montana. Part 1. Surface Water Records Surface Water Records. Water Resources Records for Idaho. Part 1. U.S. Geological Survey 1972.

Waste Source Discharges in the Kootenai River Basin Prior to 1972.1 Table 2.

Source	Type of Treatment	Receiving Water	Volume MGD (m ³ /day)	TSS mg/1 (kg/day)	BOD ⁵ mg/1 (kg/day)	COD mg/1 (kg/day)	Hd	Fecal Coliform no/100 ml	P.Z. Rav Tr	Z. Treated
City of Bureka	Primary with Chlorination (Spiragester)	Tobacco R.	0.1 (378.5)	70 (26)		134 (51)	6.7	17x10 ⁶	1100	800
City of Libby	Primary with Chlorination	Kootenai R.	1.0 (3785)	46 (174)	105 (397)	100 (378)	7.3	42x10 ⁴	3000	2000
St. Regis Co. (Sevage)	Secondary Trickling Filter	Kootenai R.	0.07 (265)	50 (13)	25 (7)		6.5-		250	88
St. Regis Co. (log pond)	Settling ponds	Kootenai R.	13.6 (51476)	22 (1134)	5 (258)	35 (1805)	6.5-	350		
W. R. Grace Co.	Complete Retention Recycle 2/	Rainy Cr.	none							
Granite Con- crete	Settling Ponds	Libby Cr.	none							
City of Bonners Ferry	Aerated Lagoon	Kootenai R.	0.2 (757)	20+	20		7.5-		2000	

Numnallee and Boltz, 1973; Water Quality Inventory and Management Plan, Kootenai River Basin, Montana. Montana Department of Health and Environmental Sciences. Helena, Montana. Jones, Roy. 1975. Personal Communication, Superintendent, City of Bonners Ferry Power and Light, 17 March 1975. 1/Source reference:

2/Facilities completed in 1971.

Table 3. Fish Species Known to Occur in the Kootenai River Prior to

1		Parameter	Method of Analysis	Note
Compos Name	SCHOOLITIC NAME	Alkalinity	Volumetric, Poteniometric	Method changed July 1969
		Aluminum	Ferron - orthophenanthroline	
Wile starfeon	ACT PRESENT LIEUROULEMEN	Arsenic	Silver diethyldithiocarbamete	
		Berium	Complexometric	
Bolly Verden trout	STATE TRUTT	Beryllium	Atomic absorbtion	
7.		Bicarbonate	(see alkalinity)	
Brook trout	Selvelinus continaits	Boron	Disothraide	
		Cadmium	Atomic absorbtion	
Catthrost trout	SALED CLARKI	Calctum	Complexometric, atomic absorb-	A.a.s. adopted prior to
.			tion	Dec 69
Rainbow trout	Sallo galremeri	Carbon, total organic	Carbonaceous analyzer	
- L			Calculation	•
- segran	OBCOL ANADOUNG DELEG	arbonate	(see alkalinity)	
		Chloride	Mercurimetric	
MOUDERIN WATERTON	LIONODIA ATTICIONI	Chromium	Atomic absorbtion	
1		Cobalt	Atomic absorbtion	
Pyggy whiteflab.	Prosopius contreri	100	Comparison	
,		Conner	Aromic absorbtion	Method changed July 1969
	דיסוד דיסוד	Fluoride	Zirconium - eriochrome cvan. R	
		ne de la constante de la const	Complementate	
Borthern squentish	Ptychochellus oregonensis	Iron	Dinaridina	
			At and a throught does	
Largescale sucher	Catostomus macrocheflus		VIOLIC ADSOLDLING	
		Lichiu	Atomic absorbtion	cumuled July
Longnose sucker	Catostomus catostomus	ragnes 100	Atomic absorbtion	cuanged July
		Manganese	Atomic absorbtion	Method changed July 1909
Postsouth chub	Mylocheilus caurinus	MAS (detergents)	SCRIPTION	
		Motybacena	Dithiol	
Redeide shiner	Richardsonius baltestus	MICKEL	Aromic absorbtion	A CANADA
		Mitrogen, amonia	DISCIPLATION - Designation	Method changed July 1909
Longnose dace	Thinichthys cataractae	Mitrogen, nitrate	Phenoldisulionic acid, brucine	brucine adopted Apr 1969
,			Discotization	changed July
Pricking sculpin	Cottus asper	Mitrogen, organic	Kjeldahl	Method changed July 1969
•		Oxygen, dissolved	Azide Idometric or Instr.	
Sitmy occipin	Cottus cognetus	Oxygen demand, BOD	Standard	
•		oxygen demand, cop	Standard	
Largemouth bess 2.	Micropterus salmoides	Phenolic cpds.	Gibbs reaction, 4-Aminoanti-	Method changed July 1969
			pyrine	
Preskinesed sunfish.	Leponia gibbosus	Phosphorus	Phosphomolybdate (Persulfate	Method changed Feb 1969
			oxidation)	
		Potassium	Flame photometry, Atomic	
			absorbtion	
	and Pailte	Selenium	Diaminobenzidine	
		Silica	Molybdate blue	Method changed July 1969
		Silver	Atomic Absorbtion	
4. ARKIDERCES.		Sodium	Flame photometry, Atomic	A.a.s. introduced efter
			shaorhrion	Dec 1969
resent, but probably intro	Freent, but propesly introduced above Locteral Falls; indigenous below.	Solide diesolved	Part diseason energy for	
		Solida amended	Filtration	
		Specific conductance	Instrumental	
		Strontine	Atomic shootbilon	
		G. J. Fata	Spectroshotcastate thoras	
		Turkidite	Hellte turbidanter Menhel-	Manhelometric introduced
			ometric	after July 1969
		Vanadium	Catalytic oxidation	

Table 6. Discharge of the Kootenai River at Wewgate, B.C., 1967-1971 Table 5 . Bottom Fauna Sampling Stations on the Kootenai River, 1968 - 1971. Notice Sampling Locations

Station 1.

Station 2.

Doubstream from the teem of Berford, Montans on the west					Calendar Year	Year			
neme at inver elimiter 414.4, 1.0 kilometer upstradm from the now reservoir bridge and 57.3 kilometers upstream from the Part	Discharge		1967	1968	1969	1970	1761	1967-71	
	Total m/sec-day		126751	108834	127547	78441	122355		
Near the comm of watland, mostem on the west bank at river bilometer 369.5, 1.6 bilometer upstream from the Warland Bridge and 12.3 bilometers upstream from Libby Dam.	ft. ³ /84	ft ³ /sec-day 44	4476130	3843410	4504250	2770120	4320890		
East bank of the river at river kilometer 352.3, 1.1 kilometer upetram of the Highway 37 Bridge and 4.8 kilo- meters downstrame from Libby Dem.	Mean m/sec	g.	347	297	3%	215	335	30	
North bank of the river near Lowry Gulch at river kilometer 342.6, 14.5 kilometers below Libby Dam.	ft³/sec	ខ្ព	12260	10500	12340	7589	11840	10906	
rate Locations	Maximum m ³ /sec	ŭ	1994	1761	1858	1422	1688		
Bouys attached to the St. Regis Bridge at river kilometer 419.2, 62.1 kilometers upetrams from Libby Dem.	ft ³ /86c	g.	70400	62200	00959	50200	29600		
Bouys attached to the Marland Bridge at river kilometer 367.9, 10.8 kilometers upstream from Libby Dem.	Minimum m ³ /sec	<u>u</u>	94	47	22	37	3		
Bowys anchored in river at river kilometer 351.5, 0.3 kilometer upetraum from the Highway 37 Bridge and 5.6 kilometers downstream from Libby Dum.	ft ³ /sec	ខ្ព	1620	1670	1820	1290	1570		
	Percent 41 yr. mean	r. mean	111	100	111	72	113	104	
	(1930-71, 298 m³/mec,	8 m³/mec,							
	10520 ft ³ /sec)	3							

Station 3.

Station 4.

Substrate Locations

Cylindrical

Station 1.

Station 2.

Station 3.

Table 8. Discharge of the Kootenai River Below Libby Dam, 1967 - 1971. 1. Table 7. Discharge of the Kootenal River Mear Rezford, Montana, 1967-1971

		3	Calendar Year							Calendar Year	Year		
Discharge	1967	1968	1969	1970	1971	1967-71	Discharge	1961	1968	1969	1970	1971	1967-71
Total m3/sec-day		115472	140118	83600			Total m3/sec-day	139490	117524	141282	86452	137454	
ft³/sec-day		4077820	4948210	2952280			ft ³ /sec-day 4926010	4926010	4150290 4989310	4989310	3053020	4854120	
ن ي :							•						
Non s'/oc		ž	춫	229			Mean m3/sec	382	321	387	237	378	ž
ft ³ /sec		11140	13560	8908			ft ³ /00c	13500	11340	13670	8364	13299	12043
Mexicos m ³ /soc		1758	1960	1405			Maximum m³/sec	2078	1753	1954	1424	1863	
ft ³ /80c		62100	69200	49600			ft3/eec	73400	61900	00069	90300	9890	
•													
Madma = 700c		22	84	37			Minimum m³/eec	*	ß	\$	37	\$\$	
ft. 3/200		2000	1700	1300			ft ³ /eec	1900	1800	1800	1300	1600	
Percent 15-yr. mean							Percent 10-yr. mean						
(192940, 67-71, 287 m³/sec	3/sec						(1961-71, 338 m³/sec,	,					
10130 ft ³ /sec)		110	134	8			11920 ft ³ /sec)	113	\$	#	2	112	102

1. Figures prior to September 1971 were obtained from the etress gage at Marland.

Table 10. Discharge of the Kootenal River at Porthill, Idaho, 1967-71 Table 9. Bischarge of the Kootemai River near Copeland, Idaho, 1967-1971.

			Ü	Calendar Years							ၓ	Calendar Year	*		
Mecharge	2	1967	1968	1969	1970	1971	1967-71	Discharge	2	1961	1968	1969	1970	1971	1967-71
Total	Total s3/sec-day	190079	160270	202491	118790	191435		Total	Total m3/sec-day	195480	165996	209127	122999	198204	
-	ft ³ /sec-day 6712540	6712540	5659850	7150880	4194990	6760430			ft ³ /sec-day	6903290	5862060	7385220	4343650	094669	
1	m ³ /sec	521	87	555	325	824	473	Me an	m 3/86c	535	454	573	337	543	88
-	ft³/sec	18390	15460	19590	11490	18520	16692		ft ³ /mec	18910	16020	20230	11900	19180	17247
Maximum m ³ /sec	m³/sec	2710	2101	2500	1812	2469		Meximum m³/sec	m ³ /sec	2784	2129	2588	1863	2554	
-	ft³/00c	95700	74200	98300	94000	87200			ft ³ /90c	98300	75200	91400	98899	90200	
Matem =3/sec	m ³ /mc	8	&	78	22	ĸ		Minimum m³/sec	m³/eec	8	91	62	22	2	
-	ft³/ooc	3000	3150	2770	2560	2500			ft ³ /80c	3100	3220	2800	2650	2620	
Percent (1927-7: 15,730 1	Percent 43-yr. mam (1927-72, 446 m³/amc, 15,750 ft³/amc)	ä .	86	124	13	118	106	Percent 44-yr. (1928-72, 456 1 16120 ft ³ /sec)	Percent 44-yr. mean (1928-72, 456 m³/eec, 16120 ft³/eec)	tu .	66	125	*	1119	107

Table 11. Monthly Mean Water Temperature in the	Month	ly Meen	Meter	Teperat	ure in		mei Miv	Kootenei River at Heldo, B.C.,	1do, B.			Teble 12.	2. Mon	hly Hea	n Water	T	tures to	rhe E	k River	at Ph	1111ps	Monthly Mean Water Temperatures in the Xlk River at Phillips Bridge, B.C.,	F.C. •
	197.2	197 - 1971.											196	1962 - 1971	ند								
				4	Degrees C												Degrees C	υ •					
Year	Jen F	1	Mar A	Apr Nay	an Jun	Jul	Aug	ŝ	96	Nov	ž	Year	Jan	9	Her.	Apr	May .	Jun	Jul A	S Smy	Sep	Oct Nov	Dec .
1962												1962											
1963					9.0	•		12.8	7.9			1963					1	7.8	ä	17.71	12.1	7.3	
1964					9.5	13.5	13.7	10.4				1964					1	7.8	п.9	11.8	9.0	5.7	
1965					10.1	14.6	16.3	10.3	1.7			1965					•	9.6	13.2	14.7	9.9	9.6	
1966					10.4	13.7	15.4	14.0	7.8			1966						7	12.8 13	13.7	12.6 7	7.1	
1967				7.8	8 8.1	1 12.2	14.4	12.8	7.0			1961					6.1 7	и 1.7	11.9	13.7			
1968				9.7	7 10.0	13.9	14.9	12.7	7.2			1968				_	8.3 10	10.1	14.0 1/	14.2	12.0 7	7.3	
1969				8.7	7 10.1	1 13.2	14.9	12.1	6.1			1969					6.9	9.1 E	n., 1	13.1	10.3	3.9	
1970				10.3	3 12.0	16.3	16.6	10.9	6.7			1970				,-	7.3 10	10.2	13.6 1/	14.3	9.3	4.9	
1761				8.9	9 9.7	12.9	16.2	11.4	7.1			1971				-	8.6 10	10.6	13.5	4	11.6 7	7.9	
																•							
	1962	1962 - 1971											196	1968 - 1971									
				4	Degrees C												Degrees C	v					
) 19	a a	2	Mer	Apr Hay	an Jen	Inc.	Aug	\$	ğ	1 0	ğ	Year	Jen	2	Her	Apr	E V	a di	Jel.	S Tay	da s	Oct Nov	Dec
1962						14.1	14.9	11.7	4.4			1962											
1963			•	8.8		13.0	16.5	14.3	8.8	3.0		1963											
1961				8.1	4.8	12.8	13.1	10.7	7.8			1964											
1965				8.7			16.6	10.3	9.7			1965											
1961					11.6				9.3			1966											
1961						13.5	16.1	14.1	8.1			1967											
967			-	7.6 9.	9.7 10.6	6 14.4	15.4	12.8	7.2			1968				6.9	10.9	11.8		7	14.0	8.3	
1961			1	7.8 9.7	7 11.8	8 14.7	7 16.7	13.6	7.3			1969				9.0	9.9	12.2	15.3	17.2	14.2	0.0	
1970				7.01	7 12.9	9 17.3	3 17.9	11.8	7.0			1970					11.0	12.7	17.8 1	18.5	12.3	7.8	
1261			•	7.6 9.1	٠,		17.4	12.2	7.4			1761				7.6	8.3	10.01	14.1 E	10.11	12.3	7.2	

Table 1.	 	ery of	Table 15. Summary of Monthly Mean Water	y Meen		Temperatures in the Koolenai River	res in	the Koo	renei R	iver at			Table 16.		thly Ma	lan Mate	ii Temp	Monthly Mean Water Temperatures in the Kootenai River at Porthill,	to the	Kooten	at Rive	r at Por	ch111,	
	ž	onta, 19	Leonia, 1962 - 1971.	7.										196	1962 - 1972	2								
					Degrees C	ن •												Degrees C						
Year	ä	2	X X	Apr	May	ā	Jag	Aus	des	oc t	Mov	Dec	Year	Jen	4	Kar	Apr	May	Jun	341	Aug	de.	0ct	Mov
1962									12.2	7.6	3.8	1.2	1962											
1963				6.3		11.8	13.9	16.8	14.6	4.6	3.6		1963						11.7	14.4	18.5	16.2	11.6	6.4
1961					8.3	10.4	15.3	15.3	11.8	7.6			1964	0.0	0.0	2.2	7.2	9.7	11.3	16.2	16.7	12.8	8.7	4.4
1965					9.6	11.5	16.3	18.3	11.8	9.3			1965	0.0	0.1	2.2	7.5	9.1	11.3	15.6	18.5	11.6	8.5	4.7
1966						9.11	15.9	17.3	15.8	9.5	4.2		1966	0.7	9.0	2.4	1.1	10.4	11.8	15.8	18.3	16.8	10.7	4.6
1961					6.3	10.3		16.9	34.8	8.8			1961	1.1	1.8	2.9	9.9	6.7	10.0	15.4	18.8	17.7	11.8	*:
13.				7.4	8.6	11.2			13.6				1968	0.0	9.0	4.7	6.7	9.0	10.2	13.7	16.9	15.3	9.3	4.7
1969				7.6	10.1	12.6	16.1						1969	0.0	0.0									
1970				6.3	9.5	12.8			n.,				1970				6.9	8.1	13.2	19.0	19.1	14.4	4.6	3.6
1971				1.1	4.6	11.0	13.5	19.1	13.5	9.6			1971	0.0	0.0	2.2		10.0	11.4	15.4	20.1	14.9	6.7	3.8
													1972	0.0	0.0	2.8								

ğ

0.9 1.2 2.7 0.9

1.3

TABLE 17, KOOTENAI RIVER NEAR REXPORC, PCAT.
DAILY SUSPENDED SEDIMENT, WATER YEAR CCTORER 1967 TO SEPTEMBER 1568

		OC TOBER			NUAEMBED			CECEMBER	
DAY	MEAN BISCHARGE ICFS)	MEAN CONCEN- TRATION (MS/L)	LOAD (TONS)	MEAA Dischargf (CFS)	MFAN CCNCEN- TRATION (MG/L)	LOAD (TONS)	MFAR DISCHARGE (CFS)	PEAN CCNCEN- TRATICN (PG/L)	fcac ,
1	4600	3	37	462C	6	75	3210	5	43
2	44CC	7	87	566C	8	120	3300	6	53
3	4710	6	76	547C	9	130	3420	7	65
4	4000	7	•1	493C	7	93	348C	5	47
5	4490	5	63	4656		100	3450	4	27
•	466C	•	75	4200	9	100	3480	5	47
7	4490	•	51	4686	7	77	3300	7	€2
	4300	2	24	397C	6	64	316C	6	51
•	4300	•	35	3900	6	63	3090	3	25
10	4300	z	23	4320	6	70	323C	4	35
11	4520	4	49	44CC	6	71	3400	6	55
12	4498	•	76	42CC	7	79	302C	5	41
13	9190	7	97	4400	6	71	260C	4	26
14	5640	50	300	402C	5	55	2100	6	34
15	4970	27	360	4150	5	56	185C	6	30
14	4730	92	1200	42CC	14	160	L850	9	45
17	4520	43	520	4240	8	92	2000	7	28
18	4320	10	120	3990	4	43	2100	5	28
19	4240	37	420	395C	4	43	2200	5	3C
20	4320	16	190	301C	6	62	2300	3	15
21	4320	3	35	3840	6	62	2400	2	13
22	4360	4	47	36CC	6	58	2520	6	54
23	4440	4	48	360C	5	49	275C	13	57
24	4420	•	72	3480	5	47	3230	16	140
25	4300	5	58	350C	6	57	3380	14	13C
26	4170	5	56	356C	11	110	3320	10	90
27	4110	3	33	2910	9	71	3360	10	91
28	4200	•	100	271C	5	37	321C	10	٤7
29	4220	7	80	307C	4	33	3230	28	24C
30	4320	5	58	309C	5	42	3140	320	2760
31	4040	6	65				3140	60	51C
TOTAL	139730		4546	120620		2190	90220		4965

UAILT	2022640FC	SEDIMENT.	WATER	YEAR	OCTOPER	1967	TO.	SEPTEMBER 15AR	

		JANUARY			FEBRUARY			MARCH	
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LOAD (TORS)	PEAR DISCHARGE (CFS)	MEAN CENCEN- TRATION (MG/L)	LOAD (TONS)	MEAN DISCHARGE {CFS}	PEAR CCRCEN- TRATICN (PG/L)	LCAE (TERS)
1	3100	6	50	282C	26	150	321C	12	100
2	2400	5	32	3130	14	120	3140	12	
3	2300	á	25	33CC	iõ	89	3240	,	76
4	2400	ıi	71	365C	24	240			70
Š	2580	•	56	383C	19	200	328C	51	150
•		•		3636	19	200	3650	25	5:0
•	2580	6	42	352C	14	130	3810	30	210
7	2590		42	3210	9	78	3930	32	240
	2620	6	42	309C	8	57	399C	17	180
•	2746	7	52	2990	6	48	3990	9	57
10	2800	6	45	255C	5	40	3720	9	50
11	2740		60	2 2 6 C	4	31	3560	7	67
12	2500	6	40	2910	į	55	334C	26	230
13	2960	7	47	2870		39	345C	16	150
14	2600	11	77	278C		30	3390		ěž
15	2750	7	52	273G	5	37	344C	19	160
16	2900	•	63	2570	,	49	3460	•	64
17	3000	Ť	57	2590	i i	42	3620	15	150
18	2900	Ť	55	264C	š	21	3990	15	150
19	3020	7	57	271C	- 4	29	354C	13	
20	3470	ė	46	2910	ž	47	3420	÷	67 65
21	3280					• •		•	
22	3500	12	1 10	2976	12	96	332C	7	63
23		12	110	3030	17	140	3230		70
	3500	16	150	303C	15	120	34 8G	30	Sec
24	3570	ii.	110	3270	51	450	352C	11	100
25	3540	10	96	375C	27	270	3570	14	130
26	3110	12	100	3240	11	96	357C	13	120
27	2460	7	46	321C	10	87	3570	ij	67
20	2000	5	27	3140	9	76	374C	14	146
29	2200	•	53	3130	15	100	3780	18	160
30	2510	16	110				3930	20	210
31	2650	15	110	••	••		400C	27	24C
TOTAL	86430		2053	6883C	**	2977	110500		4616

DAILY SUSPENDED SECTIVENT, WATER YEAR OCTOBER 1967 TO SEPTEMBER 1968

		APRIL			MAY			JUNE	
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LNAD (TONS)	MEAR Discharge (CFS)	MEAN CCNCFN- TRATION (MG/L)	LCAD (TONS)	MEAN DISCHARGE (CFS)	PEAN CCNCEN- TRATION (MG/L)	LCAC (TCPS)
1	3860	11	110	8500	14C	3200	3480C	70	66C0
2	386C	11	110	10600	130	3700	34200	80	7400
3	3640	7	69	10000	46	1200	50000	610	820CC
4	3570	5	48	lolcc	39	1100	62100	870	196000
5	3560	8	77	1050C	47	1300	598CC	550	89000
6	3590	6	58	11500	15	470	4960C	320	43000
7	3570	6	56	109CC	31	910	43400	170	20000
8	3480	5	47	10100	22	600	4350C	120	1400C
9	3390	5	46	947C	20	510	43600	120	14000
10	3380	6	55	947C	18	460	457CG	130	1600
11	345C	6	56	10200	25	690	48200	150	26660
12	3800	12	120	11800	43	1400	502 OC	160	220C0
13	357C	13	140	15000	82	3300	504CC	160	22CCC
14	4000	12	130	19CCC	190	9700	45200	140	17CC0
15	4020	11	120	22500	200	12000	36400	97	TECCC
16	3880	9	94	21200	100	5700	33200	88	7900
17	378C	9	92	20200	70	3800	3090C	72	6000
18	3600	7	68	215CC	78	4500	31600	80	6600
19	3640	4	39	24200	160	10000	351 00	83	7900
20	3760	6	61	27100	180	13000	42300	150	17660
21	3650	5	49	3040C	210	17000	4760C	210	27000
22	3510	7	66	3480C	320	30000	42300	130	15CCC
23	3450	6	56	420CC	420	48000	375QC	82	83CO
24	3510	6	57	43400	340	40000	35400	70	67CG
25	3510	•	38	40900	190	21000	33800	54	4900
26	36CC	3	29	35800	120	12000	34500	57	5200
27	3800	7	72	36000	100	9700	39500	110	15666
28	3600	6	62	35300	92	8800	45200	200	24666
29	3970	6	64	364CC	100	9800	40900	140	15CC0
30	5170	27	380	377CO	120	12000	33800	83	76C0
31				37400	92	9300			
TOTAL	111790		2471	703946		295140	1262700		7C44G0

CATLY	SUSPENDED	SECIMENT.	WATER	VEAR	CCTORER	1967	to	SEPTEMBER	1568
	303- 64066	3501-451414	MMI EL		CCIDBER	. 70 1		35 - 15 - 95 4	1,00

		JULY			AUGUST			SEFTEMBER	
DAY	PEAR Discharge (CFS)	MEAN CONCEN- Tration (MG/L)	LOAD (TONS)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	EGAD I	MEAN DISCHARGE (CFS)	PEAR CCRCEN- TRATION (PG/L)	(TCAE)
1	28400	60	4600	130CC	18	630	7840	8	170
2	27900	58	4400	122CC	13	430	779C	10	210
3	26500	67	4800	118CC	10	320	7790	8	170
4	30100	67	5400	11800	10	320	7590	9	184
5	31900	84	7200	11700	10	320	7310	11	22C
6	33500	94	8500	11700	10	320	706C	6	150
7	36200	98	96 00	117CC	14	440	6860	9	170
	36700	96	9500	112CC	40	1200	7090	6	110
9	34800	76	7100	10400	18	510	7420		16C
10	32000	60	5300	982C	10	270	7200	5	\$7
11	31600	56	4800	9440	10	250	684C	5	52
12	29000	66	5200	946C	17	430	6840	10	18C
13	29300	81	6200	940C	14	360	6750	6	110
14	27000	63	4600	922C	10	250	6570	4	71
15	23100	48	3000	9280	10	250	689C	8	150
16	20100	54	2900	10100	10	270	6780	12	220
17	18800	46	2300	1090C	12	350	67CC	6	110
16	17600	43	2000	9860	22	590	7000	7	120
19	16300	34	1500	954C	10	260	8230	12	270
20	16300	25	1100	9220	6	200	86 8 C	13	300
21	17400	28	1300	901C	6	150	844C	10	230
2.2	18700	33	1700	9040	5	120	8080	6	120
23	17400	32	1500	895C	6	140	7820	9	150
24	14500	38	1700	844C	5	110	759C	7	140
25	16500	21	940	#260	11	250	7540	4	120
26	15400	32	1300	793C		170	7480	15	300
27	14700	17	670	8410	7	160	765C	11	230
28	14300	20	770	86 8C	9	210	8080	10	220
29	14200	14	540	89EC	9	720	8470	•	£ 10
. 30	14200	18	690	865C	P	190	8290	6	13C
3 t	138GC	13	480	817C	7	150			
TOTAL	720000		111590	30620C	••	9840	22467C		5170
	DISCHARGE F		CFS-DAYS)						3945430 11498 0 0

		OCTOPER			MOVEMBER			CECEPBFR	
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATICA (MG/L)	LOAD (TONS)	PEAN DISCHARGE (CFS)	MEAR CONCER- TRATION (MG/L)	LOAD FTONS)	MEAR DISCHARGE (CFS)	PEAN CCACEN- TRATION (PG/L)	CAC (
1	7950	9	194	6470	7	122	4110	4	44
Ž	7760	5	105	642C	5	87	4060	4	44
3	7480	5	101	626C	6	101	411C	5	55
4	7340	7	139	6130	8	132	4220	6	68
5	7120	5	96	595C	•	129	4220	5	57
6	7090	5	96	5740	6	93	3810	12	123
7	6950	5	94	562C	5	76	3260	31	273
8	6750	4	73	5330	4	58	3420	14	129
9	6490	3	53	5130	6	83	3800	8	€2
10	6310	4	68	508C	6	82	383C	6	€2
11	6550	4	71	5CEC	5	69	4380	7	£3
12	6730	5	91	53CC	7	100	436C	7	€2
13	698C	4	75	552C	6	89	3800	12	123
14	6920	5	93	5240	6	85	350C	13	123
15	673C	12	218	504C	5	68	364C	8	75
16	6550	6	106	5020	14	L90	3680	6	63
17	6230	9	151	4690	6	101	4080	7	77
18	5980	13	210	4690	4	51	4080	9	55
19	578C	6	94	45EC	10	124	406C	13	143
20	5030	•	63	45EC	23	284	3400	7	64
21	5780	3	47	4710	16	203	3210	6	52
22	5640	3	46	484C	5	65	2840	6	46
23	5520	4	60	SOEC	6	82	296C	4	35
24	5380	5	73	4970	5	67	2840	4	31
25	5380	4	58	493C	5	67	3040	5	41
26	564C	4	61	464C	5	63	3260	7	€2
27	6130	5	83	446C	4	48	284C	8	61
3.5	6210	6	101	4240	4	46	26CC	13	5 1
29	6080	3	49	424C	3	34	2400	\$3	149
3 C	6130	4	66	417C	4	45	2300	13	£1
31	6650	6	106				2200	5	3C
TOTAL	200 100		2943	15415C		2844	108510		2549

DAILY SUSPENDED SERTMENT, WATER YEAR COTORER 1968 TO SEPTEMBER 1969

		JANUAR Y			FEBRUARY			WARCH	
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LOAC (TONS)	MEAR DISCHARGE (CFS)	MEAR CONCER- TRATION (MG/L)	LOAG (TONS)	MEAR DISCHARGE (CFS)	MEAN CERCEN- TRATICN (MG/L)	LCAT
1	240C	9	58	2700	5	36	275C	13	57
2	2600	Ħ	56	27CC	4	29	2740	9	67
3	2800	8	60	28CC	5	38	274C	10	74
4	3000	13	1 05	2900	6	47	271C	6	44
5	3200	18	156	3000	5	40	2730	10	74
6	3300	20	178	2900	6	47	2790	7	53
7	3400	12	110	28CC	9	68	2820	5	38
8	3500	10	94	2700	9	66	264C	7	5 C
9	3600	13	126	26CC	13	91	2640	7	. c
10	3500	15	142	2500	11	74	265C	5	36
11	3400	15	738	2500	15	101	2650	5	36
12	3300	13	116	26CC	12	91	265C	7	5 C
13	3200	15	130	26CC	11	77	2660	9	65
14	3200	11	95	260C	15	84	2760	17	127
15	330C	10	89	2700	16	117	276C	7	• 2
16	3500	9	85	2700	15	109	2750	6	45
17	360C	11	107	260C	13	91	2990	14	113
18	3600	21	204	26CC	11	77	3270	16	141
19	3500	9	85	2500	10	68	346C	5	47
20	3300	3	27	2400	13	84	3460	15	140
21	310C	2	17	2500	12	61	336C	21	151
22	3000	1	8. l	26CC	13	91	3360	14	127
23	2900	ī	7.8	273¢	10	74	3360	10	51
24	2900	1	7.8	273C		59	327C	21	185
25	3000	1	8.1	2730	9	66	35ec	17	120
26	3100	3	25	2760	7	52	3230	18	157
27	320C	10	86	2750	9	67	3230	9	78
28	3100	2	17	2750	7	52	3390	11	161
29	3000		24				364C	14	138
30	2000	5	38				3480	18	165
31	2700	7	51		••		400C	23	248
TOTAL	98000		2450.8	74950		1977	9422C		3034

.

		APRIL			444			JLNE	
DAY	WEAR DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS)	PFAN STSCHARGE (SFS)	YEAR CONCEN- TRATION (MG/L)	LTAC (TCNS)	PEAR DISCHAPGE (CFS)	PEAN CCACER- TRATION LPG/L)	LCAC (TCAS)
ı	45EC	26	346	19800	57	3050	46500	136	17200
į	4990	34	458	IGICC	42	2050	44300	119	14200
Ì	5190	37	518	17200	ii	1440	4810C	156	20300
4	5330	39	561	167CC	3C	1350	56100	300	45460
5	5400	30	437	16200	25	1090	6340C	378	647CG
6	5950	42	675	163CC	25	1100	67900	467	89300
7	7120	65	1250	184CC	37	1840	69200	458	854CC
8	841C	82	1860	22400	69	4170	65200	294	51800
9	9250	70	1750	253CC	56	6560	5730C	245	37900
10	104CC	71	1990	3060C	199	16400	51900	200	28000
11	110CC	77	2290	3850C	370	38500	50900	147	20200
12	11800	71	2260	471CC	439	55800	499CC	112	15100
13	12800	66	2780	527CC	535	76100	467CQ	109	13700
14	13500	49	1790	5220C	537	75700	417C0	96	11000
15	1350C	47	1710	57800	490	76500	361,00	94	9160
16	1340C	43	1560	539CC	325	47300	3260C	76	6490
17	136CC	46	1690	467CC	200	25200	31500	75	63EC
18	15500	77	3220	41ecc	131	14800	3210C	66	5720
19	17700	110	5760	39000	104	11000	33900	69	€32C
20	17000	65	2980	385CC	88	9150	37900	137	1400
21	15000	45	1820	37600	76	7700	442 CC	137	16300
22	13900	37	1390	373CC	65	6550	48500	184	241C0
23	14800	55	2200	400CC	79	8530	462 GC	91	11466
24	23000	232	14400	461 CC	88	11000	43400	18	11500
25	31300	327	27600	5310C	280	40100	4260C	98	11300
26	28200	178	13600	598CC	463	74800	46900	108	13700
27	23300	107	6730	6340C	525	89900	46100	129	16860
28	21000	63	3570	59100	314	50100	48700	139	18300
29	19400	50	2620	509CC	208	28600	486 90	120	15700
30	2040C	55	3030	48100	177	23000	4700C	80	11200
31		~		501CC	218	29500			
TOTAL	416720		111845	1214700		828980	142740C	••	713676

		JULY			AUGUST			SEFTEPBER	
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS)	MEAN DISCHARGE (CFS)	MEAN CCRCEN- TRATION (MG/L)	ETAD (TONS)	MEAR DISCHARGE (CFS)	PEAR CCRCER- TRATICN (PG/L)	LCAE (TCAS)
1	43200	85	9910	13200	15	535	6340	5	£6
ž	4050C	76	8310	12700	ii	177	6260	5	es
3	38900	61	6410	127CC	10	322	4110		99
4	3920C	67	7090	12000	10	292	5890	•	127
3	38400	65	6740	114CC	Ĭ	246	5800	;	110
,	38400	• 7	8740	11400	•	270	>000	•	110
6	367C0	72	7130	11400	7	215	5700	5	78
7	34000	49	4500	11500	9	279	5700	•	123
8	3280C	93	8240	FFGGG	9	247	5700	7	108
9	306CC	86	7110	10666	9	258	5300	•	114
10	29700	57	4570	10300	9	250	5300	5	72
11	29100	41	3220	9920		214	5300	3	43
12	27900	39	2940	9800	8	212	515C	5	70
13	26 BCC	35	2530	965C	8	208	5150	7	57
14	24500	39	2580	9230	8	199	5100	5	70
15	2300C	43	2670	897C	7	170	5540	•	é C
16	21300	40	2300	8680	5	117	5700	5	77
17	20000	29	1570	868C	ė	167	5430	Ā	99
1.8	19200	35	1810	868C	6	187	5300		97
19	18600	27	1360	8390	į	159	5300	•	72
20	19200	31	1520	7980	ė	129	5300	6	ii
21	17900	16	773	7780	7	147	5720	•	53
22	17800	io	481	764C	ż	144	9910	i	120
23	17500	18	650	75 E C	Š	102	5910	i	144
24	17400	is	846	7580	í	143	6550	เเ้	155
25	17200	13	604	74 E C	ģ	1 62	6850	ii	299
.,	11200	• • •	507		•	102	0070		2.4
26	17200	15	697	7460	e	162	6790	14	257
27	16600	14	627	764C	9	1 86	6700	15	217
28	15700	12	509	748C	9	102	64 CC		130
29	15000	13	527	732C	5	99	6000	7	113
30	14400	13	505	716C	5	97	6460	7	121
31	13800	17	633	6700	7	127			••
TOTAL	773100		99562	268220		6394	174780		3390

5024650 1788906.8

TOTAL DISCHAPGE FOR YEAR (CFS-DAYS)
TOTAL LCAD FOR YEAR (TONS)

		CCTCBER			NOVEMPER	•		CECEPBER	
DAY	HEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SECIMENT DISCHARGE (TOMS/CAY)	#EAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CCACEN- TRATICN (MG/L)	SECIPENT DISCHAPGE (TCNS/CAY) ¹
ı	7880	15	314	3930	4	42	2970	6	46
2	8750	29	685	4030	6	65	3090	10	63
3	8390	14	317	4130	4	45	3180	• • • •	43
4	7 9 50	7	150	4190	3	34	3000	6	49
5	7130		154	4130	5	56	2950	5	46
•	6820	6	110	4490	6	73	2950	5	4C
7	4110	5	82	5000	5	68	2950	1	48
•	6260	4	48	5080	10	137	2990	2	40
•	6880	4	74	4510	8	97	3020	2	49
10	6230	•	67	4700	Ť	89	3020	4	33
11	5970	2	32	4210	10	114	2960		48
12	5840	8	127	4340	4	47	2960	2	
13	5400	6	87	4450	ż	24	3240	,	24 35
14	5400	Z	29	4450	3	36	3310	7	
15	5050	2	27	4170	6	60	3310	ě	54 54
16	5030	2	27	3950	3	32	356C		36
17	4910	1	13	4030	3	33	3630	- 7	
18	4810	4	52	4130	Š	56	3650	5	49
19	4790	5	65	421.0	3	34	3390	7	49
50	4670	18	227	4130	4	45	3240	ŕ	64 61
21	4400	12	143	4130	5	56	3310	6	54
22	4400	4	48	3560	5	48	3310	ě	71
23	4030	2	22	3710	3	30	3310	ñ	éž
24	4260	2	23	3910	3	32	3330	6	
25	4610	2	26	4010	ĭ	ii	3160	6	54 51
26	4670	•	50	3390	3	27	2880		31
27	4540	4	49	3310	4	36	2860	7	31
\$8	4130	2	22	3240	4	35	1800	7	
29	4150	2	22	3020	8	65	1700	3	29
30	4030	4	44	2950	6	48	1700		14
31	4450	•	48		<u>-</u>		1700	3 5	14 23
TOTAL	172186		3209	121490		1583	92450		1384

TABLE	17.10	SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1969 TO SEPTEMBER 1970									
		JANUARY			FERRUARY		MARCH				
DAY	NEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT OISCHARGE (TOMS/(AY)	PEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SED IMENT DI SCHARGE (TONS/DAY) ^I	MEAN Discharge (CFS)	PEAN CONCEN- TRATION (PG/L)	SECIPENT CISCHARGE (TCAS/CAY) [†]		
1 2 3 4 5	1700 1700 1600 1500 1300	5 4 4	23 18 17 16 14	2760 2620 2700 2640 2700	6 7 11 6 7	45 50 80 43 51	2460 2430 2400 2350 2370	6 5 6 5 4	4C 33 35 32 26		
6 9 10	1400 1500 1400 1700 1800	4 8 5 6	15 32 22 28 49	2700 2700 2700 2700 2700	6 6 5 5	44 58 44 36 36	2350 2620 2640 2640 2660	5 6 7 0 11	32 42 50 57 75		
11 12 19 14	1906 2100 2200 2300 2400	16 23 16 18	92 74 95 112 78	2700 2700 2700 2640 2640	5 8 16 8 11	36 58 117 57 78	2660 2830 2960 3000 3000	7 15 10 5	5C 115 EC 41 49		
16 17 10 19 20	2400 2300 2100 2300 2500	12 15 11 0 5	78 93 62 90 34	2830 2870 2870 2860 2860	7 8 10 11 16	53 62 77 85 124	3000 2880 2880 2910 2920	12 6 6 8 8	67 47 47 63 63		
21 22 25 26 26	2700 2900 3000 3100 3200	6 10 13 13	44 78 105 109 95	2900 2900 2760 2640 2570	7 6 7 3 2	55 43 52 21 14	2920 2700 2440 2640 2640	6 3 2 7	47 22 14 50 57		
26 27 28 29 29	3200 3100 2900 2700 2700 2700	9 12 6 9 9	78 100 64 37 37 37	2500 2500 2500 	• • - -	41 61 41 	2640 2640 2700 2700 27 0 0 2700	12 10 6 7 4	86 71 44 91 29 15		
TOTAL	70740		1786	75060		1502	83580		1568		

	APRIL				444		JUNE			
DAY	MEAN DISCHARGE (CFS)	MEAN CCRCEN- TRATION (MG/L)	SECIMENT DI SCHARGE (TONS/CAY)	PFAN DI SCHARGE (CFS)	PEAR CONCEN- TRATION (MG/L)	SEDIMFNT DISCHARGE ITONS/DAY) ⁹	MFAN DISCHARGE (CFS)	FEAR CCRCER- TRATION (FG/L)	SECTPENT CISCHARGE (TCNS/CAY) ¹	
1	2790	2	15	3360	10	91	23600	67	4210	
2	2790	9	68	3440	13	121	25800	87	6060	
3	2790	5	38	4090	38	420	31900	136	11900	
4	2790	3	23	5470	50	738	40200	183	19900	
5	2790	5	30	7420	128	2560	47600	222	285C0	
6	2910	4	31	16406	130	3650	49600	223	29900	
7	3240	3	26	14000	132	4990	488CC	142	18766	
6	3590	6	58	16300	130	5720	46800	72	910C	
•	3510	6	57	16400	85	3760	444C0	56	671C	
10	3510	6	57	15900	41	1760	42300	34	388C	
11	3670	5	50	15000	24	972	371C0	31	311C	
12	3670	5	5 C	14100	20	761	30400	29	2380	
13	3560	6	58	12600	20	680	26000	25	176C	
14	3390	5	46	11300	20	610	25200	22	15CC	
15	3240	•	35	10500	20	567	26900	28	203C	
16	3210	6	52	11000	24	713	29600	94	751C	
17	3180		65	15300	67	2770	34300	128	119CC	
10	3140	5	42	22900	146	9030	35900	133	12900	
19	3170	8	68	24800	190	12700	345CC	97	904C	
20	3240	6	52	24700	218	14500	33800	69	63CC	
21	3390	•	37	24500	78	5160	32700	54	4770	
22	3500	5	47	25300	148	101 CC	31600	48	41CC	
23	3510	7	66	26800	167	12100	306CC	64	525C	
24	3510	4	38	28200	154	11700	28400	62	475C	
25	3540	7	67	29800	150	12100	24900	40	269C	
26	3590	12	116	3350C	132	11900	23300	24	151C	
27	3590	11	107	38500	89	9250	21800	23	1350	
28	3560	•	36	34900	79	7440	21700	24	141C	
29	3400	5	46	29800	77	6200	22000	22	1310	
20	3340	8	73	26300	78	5540	21400	35	2C2C	
31				24400	68	4480				
TCTAL	99130		1566	580980		163083	9731C0		22655C	

	3 17.12			34, 4-7		TOBER 1969 TC S			
		JULY		AUGUST			SEPTEMBER		
		MEAN			MEAR			PEAN	
	MEAN	CONC EN-	SED IMENT	PEAN	CONCEN-	SEDIMENT	MEAN	CCNCEN-	SEC IMENT
	di schar ge	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY	(CFS)	(MG/L)	(TCNS/CAY)	(CFS)	(MG / L)	(TONS/DAY)	(CFS)	(4G/L)	(TCAS/CAY)
1	21000	32	1610	9100	8	197	495C	9	121
Z	19700	29	154C	8800	8	190	4970	17	228
3	18300	25	1240	8380	6	136	5210	28	394
4	17400	20	94 0	e140	6	1 32	5450	14	2C4
5	17700	22	1050	7990		173	5400	9	131
•	17800	23	1110	e 260	7	156	5210	7	se
7	17000	16	734	7840	7	148	5100	10	138
	15600	13	548	7650	9	186	5190		112
9	14800	11	440	7650	8	165	5400	8	117
10	14600	10	400	7400	9	180	5130	9	125
11	14200	12	460	6810	12	221	5080	7	96
12	13600	13	477	6550	11	195	4880	6	79
13	12600	14	476	6420	9	156	4860	14	184
14	12200	12	395	6360	11	189	4640	5	63
15	11200	10	302	6340	14	240	4520	é	72
16	10600	11	315	6130	16	265	4480	5	60
17	10600	13	37 2	578C	12	167	4320	6	76
16	10500	12	340	5810	8	125	4200	5	58
19	10600	11	315	5780	10	156	45ec	5	62
20	9960	12	323	557G		120	5950	6	129
21	9650	10	261	5350	5	72	6080	11	161
22	9680	7	103	530C	13	1 86	5900	8	127
23	9790	6	159	5240	10	141	5880	1 C	159
24	9370	9	228	5240	4	57	5880	9	143
25	8860	9	215	5300	5	72	5660	10	153
26	6710	10	295	\$210	5	70	5350	•	67
27	8860	•	191	5170	6	84	5150	14	195
20	9130	11	271	5080	6	82	5080	6	82
29	9790	9	238	5130	13	180	4950	7	94
30	9790	15	396	5170	10	140	4910	5	44
31	9200	10	251	:130	4	55			
TCTAL	393070		16215	200080		4656	154480		3071
	DISCHARGE FO		FS-DAYS) Scharge for Yea	e (TORS)					3C1714C 427015

	OCTO EER				MUACHES		CECEPBEP		
DAY	MEAN DISCHARGE (CFS)	FEAR CONCEN- TRATION (MG/L)	SEDIMENT CISCHARGE (TONS/CAY)	MEAN Discharge (CFS)	MEAN CONCEN- Tration (MG/L)	SEDIMENT DISCHARGE (TCNS/CAY)	MEAN DISCHAPGE (CFS)	MEAN CONCEN- TRATICA (MG/L)	SECIMENT CISCHARGE (TCNS/CAY)
ı	4910	2	27	3400	2	19	2800	7	53
2	4910	4	53	3650	- Ā	39	2880	5	25
3	4860	4	52	360C	ž	19	2880	ź	16
4	4770	6	77	3620	ž	20	2880	6	47
5	4770	4	52	348C	ž	19	2900	3	23
6	4880	•	79	3560	2	19	2900	2	16
7	5060	5	69	262C	2	20	3360		ėž
8	5130	5	69	3440	ž	20	3780	í	71
9	5020	4	54	367C	ž	20	3670	26	256
10	4880	3	40	3730	Ă	40	3400	14	129
11	4710	4	51	368C	2	20	3200	7	ec
12	4580	•	49	3670	2	20	3000	6	49
13	4580	4	45	3620	2	20	2800		45
14	4420	4	48	3570	5	48	2700	ĭ	5é
15	4320	4	47	3510	7	66	2900	ž	55
16	4220	8	91	3510	8	76	3000	7	57
17	4220	. 3	34	3460	3	28	3100	Ŕ	67
16	4180	6	68	3420	5	46	3200	i i	ĭė
19	4000	4	43	1420	7	65	3100	ź	59
20	4060	6	46	3420	5	46	3000	ė	49
21	4080	6	66	3400	45	413	2700	5	36
22	4090	5	55	250C	23	155	2300	7	43
23	3910	5	53	2000	23	124	1800	ġ	44
24	4110	6	67	2200	24	143	1400	18	é
25	4110	4	44	2820	7	53	1800	20	97
26	4110	4	44	2820	5	38	2100	10	57
27	4000	•	43	2820	4	30	2400	12	78
28	3910	4	42	2750	8	59	2600	15	105
29	3670	5	5 C	2680	10	72	2800	ió	iží
30	3600	7	68	2780	9	68	3000	io	81
31	36 00	5	49				3000	.6	45
TCTAL	135690		1699	96220		1825	87350		2090

TABL	B 17.14	SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1970 TO SEPTEMAER 1971									
		JANUARY			FERRUARY		PARCH				
		PEAR			MEAN			PEAN			
	MEA'I	CONCEN-	SEDIMENT	PEAR	CONCEN-	SECIMENT	MEAN	CONCEN-	SECIMENT		
	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	CISCHARGE .		
DAY	(CFS)	(PG/L)	(TONS/CAY)	(CFS)	(MG/L)	(TCNS/CAY)	(CFS)	(MG/L)	(TENS/CAY)		
1	3000	15	122	4100	17	186	3020	7	57 57		
2	2500	14	95	4600	7	87	3020	Ţ			
3	2000	10	54	4620	4	50	2860	6	46		
4	1800	9	44	4620	7	87	2820	7	53		
5	1700	12	55	4500	3	36	2640	é	46		
	1600	23	99	4000	10	108	2760	6	45		
ij	1900	12	62	3500	14	132	2830	e	61		
	2000	**	36	3000	19	154	2840	6	46		
•	2100	'n	4C	3200	13	iiż	2840	6	46		
9			49	3400	*6	55	2880	ž	54		
10	2000	9	47	3400	•	,,,	2000	•			
11	1900	10	51	3600	10	67	29 10	8	62		
iż	1800	· ř	39	3600	24	246	2910	8	63		
13	1900	Ă	31	4000	16	173	2910		63		
14	2000	•	27	4200	16	181	2880	7	54		
15	2100	í	40	4060	19	208	2860	9	69		
_		•							€C		
16	2200	7	42	4020	11	119	2780	•			
17	2400	12	76	3900	11	116	2800	9	60		
18	2700	7	51	3720	20	201	2750	10	74		
19	3000	4	32	3420	17	157	2730	12	88		
20	3500	6	76	3380	10	91	2730	6	44		
21	3800	43	852	3360	7	64	2710	6	44		
	3800	137	1416	3380	6	55	2700	6	44		
22		47	444	330C	ă	53	2680	ı i	e C		
23	3500	žž	190	3240	7	61	2700	iš	105		
24	3200		181	3300	ż	62	2730	ii	81		
25	3200	21	791	3300	•	97.	2175				
26	3300	10	160	3210	7	61	2790	. 9	68		
27	3400	10	165	3110	6	50	2830	11	24		
20	3500	25	236	3020	9	73	2820	12	91		
29	3700	18	1 8 C				2800	13	58		
30	4020	6	87		**		2920	28	551		
31	3680	17	169				3020	14	114		
TOTAL	43200	_	5199	103580		3077	87670		2184		

	APRIL				444		JUNE		
DAY	MEAN DISCHARGE (CFS)	MEAN CCNCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/CAY)	PEAN DESCHARGE ECFS I	MEAN CONCEN- TRATION (MG/L)	SED IMENT DI SCHARGE (TONS/DAY)	MEAM DISCHARGE (CFS)	PEAN CONCEN- TRATION (PG/L)	SED IPENT CISCHARGE (TCNS/CAY)
1	3040	16	131	13500	90	1020	54900	206	3140C
2	3000	17	138	14900	49	1970	526CC	103	260CG
3	2950	15	119	18500	120	4390	52600	171	243CG
4	2910	59	464	24800	267	L7900	54200	270	37500
5	2960	7	56	31700	366	31300	57500	245	38000
6	3210	32	277	36000	342	35200	60700	256	42000
7	3330	120	1080	36700	239	23700	61400	304	5G4GG
8	3760	24	244	3560C	229	22000	62500	285	40100
9	4150	33	370	37000	233	23300	63100	243	41400
10	4800	61	791	39200	212	22400	57100	218	33600
11	4970	31	416	40100	213	23100	51100	170	23500
12	4770	36	464	42900	344	39800	45500	169	20800
13	4500	26	316	50200	351	47600	45000	150	19200
14	4440	19	22 8	56600	416	94100	48100	169	21900
15	4820	27	351	51500	336	47000	47300	132	16900
16	5380	35	508	43600	208	24500	42400	124	14200
17	5500	32	475	36700	150	14900	30000	120	12300
18	5390	37	537	31200	99	8340	35800	104	10200
19	5210	23	324	28600	45	4910	34300	83	7496
20	5500	25	371	24700	52	3750	34500	73	6000
21	6420	49	849	24000	61	4280	37100	101	16160
22	7680	109	2260	2 5 5 0 0	55	3790	41900	160	10100
23	9070	110	289C	26700	86	6200	47900	205	26500
24	11300	89	2720	30100	130	10400	52900	299	42700
25	14400	133	517C	36600	165	16300	54300	207	30300
26	16700	198	8930	45400	284	34800	52166	212	29800
27	16100	186	809C	53100	422	60500	46 100	199	24806
28	14600	73	2920	63100	585	100000	39300	140	14700
29	13800	44	164C	65800	597	106000	34500	95	80 50
30	13300	40	1440	62000	315	52700	32400	92	0050
31				59000	257	40900			
TCTAL	208150		44569	1188700		930050	1439100		742490

TABI	# 17.16	SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1970 TC SEPTEMBER 1971									
		JULY			MIGUST			SEPTEMBER			
GAY	MEAN DISCHAR GE (CFS)	FEAN CONCEN- TRATION (MG/L)	SECIMENT DISCHARGE (TCNS/DAY)	PEAN DISCHARGE (CFS)	PEAR CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MFAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEC IPENT C15CHARGE (TCRS/CAY)		
1	31700	01	693C	1#300	19	939	8230	16	354		
2	31700	64	5480	1 6300	19	939	8620	16	372		
3	31500	58	493 C	18300	16	889	8300	20	475		
4	29700	46	3690	18100	20	977	8470	11	252		
5	28200	46	3650	17300	20	934	7870	10	212		
6	26700	56	404C	14300	27	1190	7510	12	243		
7	25300	58	396C	15700	24	1020	7310	•	170		
	23100	53	3310	1510C	15	612	7480	ė	142		
9	21200	50	2860	14700	10	714	8110	•	197		
10	25400	65	446C	14200	15	575	7680	•	166		
11	301 00	101	8210	13900	9	330	7400	7	140		
12	29100	99	778¢	13000	18	632	7030	6	114		
13	24000	71	537C	12500	16	540	6950	7	131		
14	26900	49	3560	11900	16	514	6950	7	131		
15	26100	29	2040	11500	17	528	6600	7	125		
16	27200	28	206C	10900	18	530	6340	7	120		
17	28700	33	2560	10300	15	417	5900	7	112		
18	29300	37	293 C	9780	14	370	5830	5	79		
19	28500	35	269C	9340	16	403	5710	5	77		
20	29500	32	2550	8950	11	266	5440	4	92		
21	30000	31	251 C	2440	9	205	5590	•	91		
22	29900	35	2830	8440	12	273	5470	5	74		
23	20000	38	295C	8560	13	300	5300	5	72		
24	28200	31	2360	8480	18	422	5150		76		
25	25100	20	1900	8500	12	275	5040	5	44		
26	22900	23	1420	8140	LO	220	5040	4	55		
27	21400	20	1160	7930	11	236	4990	5	47		
28	20400	19	1050	7310	9	178	4990	•	61		
29	20000	18	972	7400	•	180	5000	5	49		
30	18900	17	86€	7590	10	205	4930	4	93		
31	16100	14	684	7790	16	337	-				
TETAL	651900		101764	367150		16156	196078		4434		
	CISCHARGE F SUSPENDER-S		FS-DAYS) Schapge for Yea	R (TONS)					4014400 1035537		

KOOTENAL RIVER BELOW LIBBY DAM, NEAR LIBBY, MONT DAILY SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1967 TO SEPTEMBER 1968

	OCTOBER			NOVEMBER			DECFABEA		
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LGAD 1	MEAN DESCHARGE (CFS)	MEAN CONCEY- TRATION (MG/L)	LOAD (MEAN DISCHARGE (CFS)	MEAN COMCEN- TRATION (MG/L)	LOAD (TONS)
1	4920	15	199	4590	12	149	3230	43	375
ż	4920	17	226	5090	12	165	3310	35	313
3	5160	23	320	5700	20	312	3370	22	200
7	5190	72	1010	5600	Ĩì	166	3490	18	170
3	5160	65	906	5120	•	55	3600	23	224
6	5060	67	915	4720	6	76	3540	24	229
7	4920	28	372	4330	10	117	3490	14	132
é	4790	15	194	4080	6	66	3290	7	62
9	4720	27	344	4210	5	57	3010	6	49
10	4660	32	403	4300	14	163	2960	6	48
11	4790	32	414	4460	10	120	3200	9	78
	4920	22 3E	292	4560	6	74	3340	8	72
12		22	312	4430	10	120	2650	7	50
13	5260	15	231	4270	8	92	2200	8	48
14 15	5710 5600	6	121	4180	7	79	1950	11	58
16	5260	13	185	4150	7	78	1900	16	82
17	5020	73	989	4210	6	68	2000	11	59
		120	1570	4150	ě	90	2150	6	35
18	4850	50	643	4080	4	44	2250		49
19 20	4760 4690	42	532	4020	•	43	2350	8	51
	4660	51	642	3990	•	43	2450	6	53
21	4620	23	267	3840	6	62	2550	10	69
22		13	169	3780	ğ	92	2650	21	150
23	4820	11	144	3780	ģ	92	2750	19	141
24 25	4850 4820	14	182	3720	9	90	2850	22	169
26	4690	18	228	3600	9	87	3350	20	181
27	4590	iš	223	3340	8	72	3450	14	130
		21	264	3060	36	297	3400	17	156
28	4660 4690	18	226	2790	53	399	3350	18	163
29	4720	17	89	3040	41	337	3200	48	415
30 31	4660	ıi	138				3050	58	478
TOTAL	152140		12772	125270		3705	90330		4489

TABLE 18.2

DAILY SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1967 TO SEPTEMBER 1968

		JANUARY			FEBRUARY			MARCH	
	MEAY	MEAN CONCEN-		MEAN	MEAN CONCEN-		MEAN	MEAN CONCEN-	
	DISCHARGE	TRATION	LOAD	DISCHARGE	TRATION	LOAD .	DISCHARGE	TRATION	LOAD
DAY	(CFS)	(MG/L)	(TONS)	(CFS)	(MG/L)	(TONS)	(CFS)	(MG/L)	(TONS)
1	2900	17	133	3350	28	253	3150	18	153
2	2500	6	41	3150	32	272	3170	16	137
3	2350	17	108	3550	27	259	3230	13	113
4	2450	19	126	3850	37	385	3400	16	147
5	2850	8	62	4200	24	272	3690	17	169
6	2900	11	86	4200	27	306	3990	19	205
7	2900	8	63	3900	27	284	4330	23	269
8	2950	7	56	3500	16	151	4370	33	389
9	2900	17	133	3250	11	97	4210	24	273
10	3000	21	170	3100	9	75	3960	ĨŻ	128
11	2900	27	211	2950		64	3810	10	103
12	2400	13	91	2950	8	64	3690	ii	110
13	2550	6	41	2900	9	70	3540		76
14	2750	12	89	2750	7	52	3540	10	96
15	2950	19	151	2750	7	52	3540		76
16	3100	24	201	2650	7	50	3520	8	76
17	3100	23	193	2600	7	49	3660	ă	79
18	3000	11	89	2600	8	56	3840	ě	62
19	3000	11	89	2 8 0 0	11	83	3750	ğ	91
20	2950	10	80	3000	13	105	3630	9	88
21	3300	34	303	3100	13	109	3540	8	76
22	3900	35	369	3200	17	147	3460	š	75
23	4150	25	200	3400	32	294	3430	ĭ	65
24	4100	20	310	3500	36	340	3520	i i	76
25	4250	17	195	3720	44	442	3630	ž	69
26	4350	110	1290	3430	52	482	3940		83
27	3200	2 30	1990	3310	33	295	3840	11	114
28	2250	42	255	3260	18	156	3900	ii	116
29	2950	13	104	3170	i5	128	4120	iò	iii
30	3100	12	100				4330	ii	129
31	3250	14	123	**			4430	ii	132
TOTAL	95400		7532	94090		5394	116060		3886

DAILY SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1967 TO SEPTEMBER 1968

		APR IL		MAY			JUNE		
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS)
1	4270	11	127	8900	150	3600	36400	480	47200
	4120	16	89	11700	180	5490	34800	700	65800
2	3900	9	95	11400	63	2550	45800	800	98900
3	3750	á	61	11300	63	1920	61 000	1100	181000
3	3690	š	60	11900	47	1510	61 900	1200	201000
6	3690	7	70	12600	38	1290	52000	500	70200
ĭ	3660	ė	79	12200	37	1220	46500	170	21300
ė	3630	š	49	11400	38	1170	44500	150	18000
š	3570	Ť	67	10800	42	1220	44400	130	15600
10	3570	7	67	10600	36	1090	45800	170	21000
11	3630	13	127	11400	34	1050	47700	240	30900
12	3960	8	86	12900	42	1460	49500	230	30700
13	4300	i	12	15400	200	8320	50400	240	32700
14	4300	Ē	93	18600	280	14100	46700	200	25200
15	4300	6	70	22600	320	19500	39600	120	12800
16	4240	9	103	22400	190	11500	34200	86	7940
17	4080	7	77	20900	160	9030	31 000	73	6110
1.8	3870	7	73	22000	190	11300	31100	70	6550
19	3870	6	63	24300	260	17100	33600	100	9070
20	3870	6	63	27200	240	17600	39200	68	9310
21	3640	7	73	30800	240	20000	45500	85	10400
22	3750	7	71	35300	360	34300	42700	80	9220
23	3720	8	80	42800	560	64700	37600	75	7610
24	3690	8	80	45200	430	5 25 00	35100	110	10400
25	3720	8	80	41300	510	23400	33900	85	7780
26	3780	9	92	38100	160	16500	33900	140	15800
27	3870	10	104	37200	120	12100	37600	73	7410
28	3960	12	128	37200	110	11000	43700	66	7790
29	4300	14	163	37600	110	11500	42400	72	8240
30	5460	33	486	38900	110	11600	35200	66	6270
31				38800	110	11500			
TOTAL	118360		2908	733700		401020	1243700		999200

TABLE 18.4 DAILY SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1967 TO SEPTEMBER 1968

	JULY				AUGUST		SEPTEMBER			
DAY	MEAN Discharge (CFS)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS)	
1	29700	62	4970	13400	11	398	7760	8	168	
2	26400	64	4560	12500	17	574	7640	5	103	
3	25400	110	7540	11900	26	635	7660	ě	124	
4	27400	110	8140	11800	27	860	7600	ě	123	
5	30300	110	9000	11700	25	790	7320	3	39	
6	32800	110	9740	11600	27	860	7080	7	134	
7	34800	100	9400	11800	28	892	6970	6	113	
8	36000	87	8460	11400	29	893	6780	Ť	120	
9	34800	91	8550	10800	21	612	7080	ż	134	
10	32600	58	5110	10200	12	330	7400	8	160	
11	31 300	40	3380	9690	9	235	7080		153	
12	29000	40	3130	9510	10	257	6850		146	
13	27600	40	2980	9420	9	229	6660	7	126	
14	27200	40	2940	9340	8	202	6780	7	128	
15	23600	39	2490	9200	10	248	6890	13	242	
16	20500	40	2210	9650	9	234	6890	9	167	
17	18900	78	3980	10500	9	255	6780	9	165	
18	L 7900	67	3240	10400	7	197	6970	5	94	
19	16900	34	1550	9690	8	209	7800	7	147	
20	16100	34	1480	9340	6	151	8590	7	162	
21	16900	32	1460	9120	9	222	8590	•	139	
22	10100	21	1030	9200	10	248	8380	7	156	
23	17500	16	756	9070	7	171	8050	•	130	
24	16700	48	2160	8720	8	188	7680	7	145	
25	16400	27	1200	8340	8	180	7640	7	144	
26	15700	18	763	7920	10	214	7680	10	207	
27	15000	17	689	6090	9	197	7720	11	229	
20	14500	16	626	8 300	8	179	8050	11	239	
29	14200	16	613	8590	8	186	8680	11	250	
30	14100	12	457	6680	5	117	8510	10	230	
31	14100	10	361	6170	6	132		-		
TOTAL	712400		112985	308240		11295	225580		4457	
	DISCHARGE P		FS-DAYS)						4035270 156 96 43	

TABLE	18	. 5

DAILY SUSPENCED SECTMENT. MATER YEAR COTTOER 1968 TO SEPTEMBER 1969

		OCTOBER			NOVEMBER		CECEPPER			
DAY	MEAN DISCHARGE ICES)	MEAN CONCEN+ TRATION (MG/L)	LDAC (TONS)	WEAR DISCHARGE (CFS)	MFAN CCNCEN- TRATION LPG/L)	LDAD (TONS)	MEAN DISCHARGE 1 CFS)	PEAN CCNCEN- TRATICN (PG/L)	LCAE (TCAS) ¹	
			245	643C	10	174	453C	4	49	
1	8260	11		674C	iŏ	182	4430	5	éC	
3	8050	10	217	655C	ě	141	4400	6	71	
3	7760		189	6360	ž	120	443C	6	72	
4	752C	17	345			100	4430	4	48	
5	7320	5	99	elec	•	100			_	
	7200	3	58	6140	6	99	418C	3	34	
6		•	77	603C	6	98	3600	4	39	
7	7120	3	94	578C	6	94	36 C C	3	29	
	6970	5	92	5600	6	91	3600	16	164	
9	4010	7	71	5500	ž	104	412C	25	278	
10	6620	•	7.	,,,,,						
		7	124	546C	6	88	4370	25	265	
11	6950	á	143	557C	8	120	462 C	34	424	
12	662 C		205	5890	7	111	4430	36	431	
13	649C	เน	134	592C	6	96	4050	35	363	
14	7080	7		5670	6	92	4490	10	218	
15	6930	6	112	5010	•					
		_		5420	5	73	4180	12	135	
16	6740	5	91	5260	6	85	408C	11	121	
17	651C	5	86	502C	. ,	95	4120	10	111	
18	6320	5	85	4790	,	91	4080	7	77	
19	6180	4	67		ė	117	4000	5	54	
20	61C0	4	66	482C	•	•••				
		_		4950	8	107	30CC	7	57	
21	6670	7	115	516C	ě	iii	2600	6	42	
22	6CC0		130	546C	ě	118	27CC	4	29	
23	5890	7	111	5500	ĭ	104	2900	3	23	
24	578C	8	125		ė	114	2700	4	29	
25	5710	8	123	529C	•	***				
		7	111	5090	9	124	2600	12	84	
26	5850		119	482C	4	52	25CC	13	88	
27	6280	7	121	4720	4	51	1900	12	6.5	
28	6400	7		455C	4	5 C	1800	6	29	
29	64C0	7	121	4660		50	1900	12	42	
30	64 CQ	9	156	4000			2000	12	65	
31	6510	10	176		-					
TOTAL	206840	••	4010	165380		3052	110540		3663	

TABLE 18.6

DAILY SUSPENCED SECTIMENT, WATER YEAR COTORER 1968 TO SEPTEMBER 1969

		J ANUAR Y			FERRUARY			PARCH	
		MEAN			MEAN			PEAN	
	MEAN	CONCEN-		PEAN	CCNCEN-		MEAN	CCNCEN-	
	DISCHARGE	TRATICA	LOAD	DISCHARGE	TRATION	LOAD .	DISCHARGE	TRATION	LC/C
DAY	1CFS)	(MG/L)	(TONS)	(CFS)	(MG/L)	(TONS)	(CFS)	(PG/L)	(TCRE)
J	10.00	*******	110.157	,	1. 0, 6.	*******	10.37	1,0,0,	
1	2100			2600			2600		
2	2200			2700			2600		
3	2300			2800			2700		
4	2400			2900			2700		
5	2500			3000			2800		
6	2600			2900			2900		
7	2900			2800	••		2800		
ė	3500			2700			2800		
9	4200	••		2700			2700		
10	4300			2600			2700		••
11	4200			2600			2700		
12	4000			2600			2800		
13	3800			2700			2000		
14	3600	••		2700			2000	••	
15	3600			2700			2900		
16	3600		••	2800	*-		3000	••	
17	3700			2900			3300	18	160
18	3700			3000		••	3700	37	370
19	3600			2900	••		3900	Š	558
20	3500	••		2800			4010	60	650
	-							•	
21	3500			2700			3780	42	429
22	3400		••	2700			3700	25	250
23	3300	••		2600	••		3700	20	200
24	3200	••		2500			3630	20 19	186
25	2900			2400			3530	ié	181
_	2300						*		-
26	2600			2400			3450	껆	214
27	2800		••	2500			3530	24	229
2 6	3000 2700			2500			3800 4190	36 40 33 57	23
29				••				₹.	753
30	2400						4400	33	392
31	2500		••			••	4620	3/	742
TOTAL	98600	••	3190	75700		2450	101740		6571

	APPIL			MAY			JLRE		
	PEAR	MEAN CONCEN-		MEAN	HEAR CONCEN-		MEAR	MEAN CCRCEN- TRATION	LOAC .
	DISCHARGE	TRATICA	LOAD .	DISCHAPGE	Lbt. [ún	LOAC	DISCHARGE		(TCAS)
	(CFS)	146/L3	(TONS)	(CFS)	(MG/L)	(TONS)	(CFS)	(PG/L)	116731
DAY	16737	1-4-197 6 7							27500
	534C	62	894	221CC	64	3820	45100	229	
1	5830	54	950	209CC	58	3270	42400	161	18400
2	6110	53	674	19900	52	2790	4500C	228	27760
3		56	950	193CC	36	1980	52700	479	68200
•	628C	53	909	18900	39	1990	611CC	767	127660
5	6350	77	707						
			1340	19200	44	2280	65800	802	142000
6	6910	72	2810	212CC	54	3090	69000	651	155000
7	8320	125		243CC	80	5250	66500	660	114660
A	9480	157	4020	2720C	148	10900	5800C	258	40400
9	9970	133	3560		224	19200	50900	276	37566
10	10500	115	3380	31800	244				
					263	27500	4990C	264	356CC
11	1200C	123	3990	387CC	243 248	35800	48800	148	195CO
12	12600	105	3570	461 CG		74700	47000	178	226C0
13	13300	112	4020	522CC	53C	89900	42800	161	18600
14	14000	100	3780	55800	597	99500	36800	177	17600
15	13800	107	3990	577CC	639	44200	30700	• • •	••••
• ′	••						3340C	161	145C0
16	13400	80	2890	54000	549	80000		140	12000
17	13900	77	2890	461CC	352	43800	31800	121	10466
10	15800	100	4270	411CC	232	25700	31900	170	15100
16	1820C	180	8850	385CC	205	21300	33000	78	7620
	18000	142	6900	37CCC	206	70600	362 OC	10	1020
20	10000		•						
	161GC	17	3350	359CC	166	16100	42400	252	28ECC
21		53	2100	35CCC	142	13400	48300	198	25800
22	14700	70	3020	368C0	148	14700	4710C	322	46566
23	16000		230C0	417CG	240	27000	44400	377	45200
24	2440C	362		482CC	414	53900	4300C	168	1950C
25	31700	596	51000	40200	,,,	••••			
		_		56700	395	60500	47300	186	236C0
26	29900	320	25800		570	55400	48400	210	2 & 5 C C
27	25700	236	16400	62000	648	104000	50400	198	26500
28	22500	107	6500	592CC	364	49100	5000C	181	24400
29	22000	72	4280	50CCC			488CC	159	2C5CC
30	226CC	76	4640	45700	213	26300 41700	40000		
31				484CG	319	41100			
-	44604C		204827	1211600		1075470	1418200	••	122572C
TCTAL	770070								

TABLE 18.8	DATE Y S	C30MPC3U	SEDIMENT.	WYALE AL	FAR (CCTCRER	1968 T	3 SEPTEMBER	1969
	JULY			Aligi	UST			St	PTEMBER

	3061			40.37.7			25775755			
		MEAN			MEAN			PEAN		
	PEAR	CCACFN-		WFIR	CCNCFN-		MEAN	CCNCEN-		
	CISCHARGE	TRATION	L749	DISCHARGE	TRATION	LOAD .	DISCHARGE	TRATION	LCAC .	
DAY	(CFS)	(46/L)	(TONS)	(CFS)	(MG/L)	(TONS)	(CFS)	(FG/L)	(TCAS)	
								_		
1	45400	227	27800	12900	12	418	6760	5	90	
2	42600	128	14700	12300	11	365	656C	7	124	
3	4000C	103	11100	11900	13	418	6320	7	119	
4	39600	85	9090	11700	13	411	61.60	5	83	
5	39200	73	7730	11200	13	393	6180	7	117	
6	37600	76	7720	11000	17	505	618C	6	100	
7	3570C	81	7810	10800	27	642	6140	7	116	
6	33500	61	5520	10500	16	454	593C	4	64	
ç	31500	50	42 50	10100	13	355	5790	6	54	
10	300CC	46	3730	984C	ii	292	5690	- i	61	
••	30000	•••		• • • •				•		
11	2850C	48	3750	9640	13	338	562C	5	76	
12	264CC	44	33 7C	548C	13	333	5580	6	50	
13	28000	39	2950	9360	12	303	565C	6	52	
14	2550C	40	2800	9200	21	522	5550	5	75	
15	23300	43	2710	8920	14	337	56 9 C	7	108	
							4000	•		
16	2170C	51	299C	864C	11	257	6000		146	
17	20300	51	2800	8480	12	275	590C		127	
1#	191CC	39	2010	856C	10	231	5720	6	53	
19	18300	30	1460	84CC	8	101	558C	7	105	
2 C	17700	35	1670	8080	9	196	54 E C	•	55	
21	17300	27	1260	788C	12	255	5760	7	109	
22	172CC	16	743	7680	9	187	586C	10	156	
23	17000	18	826	7400	6	120	6040	9	147	
24	16300	10	792	764C	6	124	6210	17	285	
25	158C0	16	683	744C	7	141	6530	15	264	
							674C	14	255	
26	15500	21	879	744C	15	301	6630	i3	233	
27	14000	17	734	764C	6	124	6530	12	212	
28	15400	17	707	752C	6	122 118	6280	iš	220	
29	14300	16	618	7360	6			13	210	
30	13866	13	484	7120	6	115	951C		2 I U	
31	1 3400	11	398	645C	5	94				
TOTAL	7787C0		134104	283010		8927	181230		4646	
	DISCHAPGE F	ne veat f	CEC-04461						5477580	

	OCTORER			AGAs ABCs			CECEMBER		
EAY	MEAN DISCHARGE (CFS)	PEAR CONCEN- TRATION (MG/L)	SFCIMENT CISCHARGE (TCNS/CAY)	MEAN CISCHARGE (CFS)	MFAR CCNCER— TPATION (MG/L)	SPOIMENT DISCHARGE (TONS/CAY)	MEAN DI SCHARGE (CFS)	MEAN CCRCEN- TRATION (MG/L)	SEC IMENT CISCHAPGE (TCRS/CAY)
ı	6740	13	237	4400	5	59	3100	4	23
ž	7900	17	350	4340	7	62	3000	3	24
3	8080	13	284	428C	7	61	2900	2	16
á	7680	13	270	4340		94	2900	4	31
5	7230	ģ	174	4280	10	116	2900	3	23
6	6700	7	127	4610	22	274	3080	3	25
7	6490	5	88	4880	9	119	3250	2	10
À	6280	•	85	4540	7	63	3370	2	18
ÿ	6190	5	83	4790	7	91	353C	3	25
10	6140	•	66	467C	6	76	3400	12	110
11	6140	4	66	4580	5	62	3200	11	95
12	4000	3	49	4490	12	145	3150	6	51
13	5790	3	47	4460	4	48	3160	7	éC
14	5620	2	3C	4340	4	47	3280	9	ec .
15	5550	ĩ	15	4280	4	46	3380	10	91
16	5410	2	29	422C	5	57	3480	4	38
17	5270	2	78	4280	7	81	3480	3	28
18	5150	3	42	4280	9	104	3380	2	18
19	5030	3	41	4130	5	56	3250	2	18
20	4970	4	54	4040	4	44	3230	2	17
21	4940	5	67	4100	4	44	3150	2	17
22	4850	4	52	4100	6	66	32CC	3	26
23	4790	4	52	4010	5	54	3330	4	36
24	4790	4	52	3980	5	54	328C	6	53
25	4790	2	26	355C	6	64	3100	5	42
26	4700	2	25	3780	7	71	2900	•	31
27	4640	3	36	365C	5	49	2370	3	19
28	4640	4	5C	750 0	4	38	1800	2	9.7
29	4520	4	45	3300	3	27	1700	2	9.2
30	4490	4	48	3200	3	26	1600	3	13
21	4460	3	36	••			1600	4	17
TOTAL	175860		2670	126200		2266	92430		1095.9

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1969 TO SEPTEMBER 1970

		JANLARY			FERRIJARY			MARCH	
DAY	MEAN CISCHARGE (CFS)	MEAN CONCEN- Tration (MG/L)	SECTMENT DISCHARGE (TONS/CAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAM Discharge (CFS)	PEAN CONCEN- TRATICA (PG/L)	SECIPENT CISCHARGE (TCNS/CAY)
ı	1600	4	17	2600	8	56	2500	2	14
2	1600	2	8.6	2700	3	22	2400	ž	13
3	1500	2	8.1	2700	4	29	2400	ž	13
4	1500	2	P-1	2700	3	22	2400	•	26
5	1300	3	11	2700	9	66	2400	3	32
6	1500	6	24	270€	5	26	2500	3	20
7	1600	8	35	2700	2	15	2600	5	25
9	1800	21	102	2700	3	žž	2600	12	84
9	2100	11	55	2700	ž	15	2700	15	55
10	2100	12	46	27CC	ž	iś	2700	13	95
11	2200		46	2700	2	15	2660	12	86
12	2300	13	81	27CC	3	žž	2630	٠,	50
13	2400	9	58	2700	ź	15	2580		56
14	2500	6	41	270C	ž	15	2610	i	
15	2600	a a	56	2600	Ş	15	2680	ř	56 51
16	2500	5	34	2900	2	16	2730	9	44
17	2400	4	26	2000	ž	16	2850	Ž	46
18	2300	4	25	3100	2	17	2900	Š	
19	2300	3	19	3100	ž	17	2800		35
20	7400	3	19	3000	3	24	2750	5 7	38 52
21	2500	4	27	2500	3	23	2730	5	37
22	2600	4	28	2900	3	23	2750	7	
23	2700	4	29	2800	ŝ	38	2000	ıí	52
24	7800	7	52	2700	6	44	2880	ii	63
25	2900	4	47	260C	š	35	2930	iò	86 79
26	3000	4	32	2600	3	21	2930	9	71
27	1000	4	32	2500	ś	34	2900		
28	2900	3	22	2500	i i	20		10	78
29	2800	4	žž	2,00	,	20	2680	11	86
30	2700	j	22			••	2900	10	70
?1	2600	Ă	20				2880 2880	7	54 70
TCTAL	70900		1091.9	7710C		700	0 30 50		1741

	APRIL				MAY		JUAE		
DAY	MEAN DISCHARGE ICFS)	MEAN CCACEN- TRATION (MG/L1	SECIMENT DISCHARGE (TONS/CAY)	PFAN CTSCHARGE (CFS)	MEAN CONCEN- TEATION (MG/L)	SEDIMENT DISCHARGE (TOMS/EAY)	MFAN Discharge (CFS)	MEAN CCACEN- TOATION (MG/L)	SECIPENT CISCHARGE (TCNS/CAY)
ı	2880	4	31	3500	23	217	24400	162	16766
Ž	2850	4	31	3650	26	256	25600	162	11200
3	2880	6	47	416C	26	292	31300	179	15100
4	2880	11	86	5650	26	397	407CC	182	20000
5	2880	11	86	764C	42	866	47300	213	27200
6	3080	11	91	1000	1 16	3390	50300	197	26000
7	3580	11	106	1460C	124	4890	50100	196	265CC
	3940	9	97	17000	102	46 BC	48100	144	187CO
9	3860		62	17100	90	3690	45000	107	13000
10	3750	6	61	16800	61	2770	42500	111	12700
11	3890	6	63	15900	51	2190	38400	99	10300
12	4010	7	76	14000	39	15eC	32200	46	40G0
13	3920	6	64	13400	39	1410	27300	43	2170
14	3750	5	51	12100	44	1440	25500	46	317C
15	3550	5	48	11500	142	4290	26200	52	3660
16	3450	5	47	11500	162	503C	29100	137	10800
17	3330	5	45	15100	174	7090	333CC	154	138CC
18	3230	6	52	23500	158	10000	36400	151	14600
19	3230	6	52	26600	95	682C	35200	129	12300
20	3350	6	54	26000	94	59CC	33600	36	327C
21	3500	9	76	25900	94	657C	32000	30	259C
22	3600	10	97	26 500	121	8660	30 300	34	27EC
23	3680	10	99	28300	118	9020	29600	31	248C
24	3750	12	122	30200	120	9760	26000	37	28CC
25	3860	7	73	31400	117	9920	25500	36	24EC
26	3690	6	63	33600	112	10200	24000	50	324C
27	3750	5	51	40500	104	11400	22400	47	284C
26	3630	7	69	41800	89	10000	21800	21	1246
29	3550	7	67	35200	53	5040	22300	20	1200
30	3500	8	76	25800	48	386C	216C0	21	1220
31				26400	66	4700			
TETAL	105040	••	2064	620600		156318	980000		28406C

TABLE 18.12 SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1969 TO SEPTEMBER 1970 SEPTEMBER JUL Y AUGLST MEAN CONCEN-TRATION (MG/L) WEAN CONCEN-TRATION (MG/L) WEAR CONCEN-TRATICA (MG/L) SECTMENT DISCHARGE (TCNS/CAY) SEDIMENT CISCHARGE (TONS/DAY) SECTMENT MF 4N PFAN HEAN DISCHARGE (CFS) DISCHARGE DISCHARGE CISCHARGE (TCAS/GAY) DAY 20800 19600 18500 9300 9000 9650 5220 5190 5470 141 112 103 51 476 450 8 10 12 194 234 274 243 275 385 205 176 218 152 149 9C 87 85 72 44 5 3 10 7 5250 5370 5440 17000 816C 6 9 5 5 3 15500 7870 1Ó 55 54 133 90 14400 13800 13100 661 224 318 7120 5120 12 13 14 15 292 362 497C 4910 20 397 242 181 175 186 165 131 112 1.. 368 72 60 82 17 18 19 20 13 8 6 6 11 10 2 7 30 656C 4450 4480 505C 6120 6C6G 5920 10000 9500 9600 9400 185 344 389 482 6020 5890 5960 114 111 4 10 9 7 23 24 25 5530 149 134 15 19 5500 9300 9500 9700 9800 402 154 262 344 344 132 101 101 115 250 566C 5370 5190 5090 27 28 29 30 31 182 137 127 5370 10 13 13 16 9 5310 TCTAL TCTAL DISCHARGE FOR YEAR (CFS-CAYS)
TCTAL SUSPENDED-SEDIMENT DISCHARGE FOR YEAR (TONS) 472462.7

. .

	OCTOBER			NOVEMBER			DECEMBER		
DAY	MEAM DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARBE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAM DISCHARGE (CFS)	MEAN COMCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
1	5060	8	109	3730	4	40	2900	17	133
ž	5030	5	68	3760	2	20	3000	22	176
5	5000	á	108	3760	2	20	3100	28	234
•	4940	5	67	3730	3	30	3000	17	138
3	4910	Ś	66	3640	Z	20	2900	22	172
	4880	5	66	3700	Z	20	2800	20	151
į	4970	5	67	3700	3	30	3400	18	165
	5190	á	84	3730	3	30	3900	30	316
•	5120	š	63	3810	Ĭ.	41	4000	10	108
10	5030	Ĭ.	54	3870	•	42	3700	4	40
11	4940	4	53	3870	4	42	3500	9	65
iż	4810	ś	65	3840	3	31	3300	4	36
13	4720	าก์	140	3780	4	41	3100	4	33
14	4660	ii	138	3730	8	81	3000	6	49
13	4570	10	123	3670	3	30	3100	6	50
16	4450	11	. 132	3640	4	39	3200	10	86
17	4450	7	84	3640	5	49	3300	10	89
iš	4450	7	84	3670	4	40	3400	13	119
19	4190	Ť	79	3640	4	39	3300	5	45
20	4190	6	68	3620	5	49	3000	12	97
21	4220	6	6.8	3620	3	29	2800	17	129
22	4220	6	68	3100	2	17	2400	17	110
23	4250	Ā	46	2300	3	19	1900	21	106
24	4250	5	57	1900	3	15	1600	6	26
25	4300	4	46	2300	5	31	1300	4	14
26	4250	5	57	3000	11	89	1600	8	35
27	4190	4	45	2900	8	63	1900	. 5	26
28	4070	4	44 -	2700	6	44	2200	11	65
29	3960	i i	43	2500	2	14	2500	10	68
30	3840	š	31	2700	4	29	2800	8	60
31	3760	3	31			**	3000	30	243
TOTAL	140890		2274	101550		1084	88900		3208

TABLE 18.14	SUSPENDED-SEDIMENT	DISCHARGE,	WATER YEA	R OCTOBER	1970 TO	SEPTEMBER 197	ı

	JANUARY			a.*	FEBRUARY			MARCH	
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE ICFS)	MEAN CONCEY- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
1	2900	10	78	7000	32	605	3260	6	53
2	2600	5	35	6600	17	303	3130	8	68
3	2200	7	42	6200	1 16	268	3180	8	69
Ä	1900	7	36	5600	21	310	3160	6	51
5	1600	11	48	5000	32	432	3050	4	33
•	1400		30	4000	14	151	2920	5	39
7	1600	3	13	3000	7	. 57	2920	15	118
8	1700	Ä.	18	2700	6	44	2970		64
9	1800	6	29	2500	8	54	2970	4	32
10	1900	12	62	3000	6	49	2970	6	48
11	1800	10	49	3500	10	95	2990		65
12	1700	6	28	4000	16	173	3070	7	58
13	1600	7	30	4500	17	207	3070	7	58
14	1700	12	54	5000	22	297	3020	4	33
15	1900	14	72	5500	37	549	2990	5	40
16	2100	11	62	6000	33	535	2940	5	40
17	2300	13	01	5600	29	438	2890	4	31
18	2600	20	140	5300	34	487	2846	3	23
19	2900	15	117	500Q	28	376	2760	2	15
20	3400	8	73	4570	26	321	2710	•	29
21	3900	7	74	4190	21	238	2100	2	15
22	4100	7	17	3960	17	182	2740	2	15
23	4000	7	76	3780	14	143	2710	3	55
24	3900	9	95	3780	13	133	2690	4	29
25	3900	4	42	3810	10	103	2810	7	53
26	3800	6	62	3740	11	112	~ 2890		55
27	3000	7	72	3590	10	97	2990	6	48
28	3700	14	140	3400	7	64	2940	5	40
29	3700	13	130				2890	7	55
30	4500	16	194				2970	5	40
31	6000	12	194				3210	. 10	67
TOTAL	84.000		2254	124440		4822	91410		1494

TABLE	18.	1:

		APRIL			MAY		BMC			
DAY	MEAN DISCHARGE (CFS)	MEAN CUNCEN- TRATION (MG/L)	SECTIMENT DISCHARGE (TONS/DAY)	MEAN Discharge (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	
	3320	•	81	14700	37	1470	57000	193	29700	
1	3260	ıí	97	16200	75	3280	53000	165	23600	
2	3240	15	131	19600	136	7200	53000	146	20900	
3	3240	*8	70	25200	241	16400	55000	137	20300	
5	3290	15	133	32100	329	28500	58000	169	26500	
			213	37200	382	38400	61000	294	48400	
6	3430	23	267	37600	260	26400	62000	257	43000	
7	3810	26		36800	190	18900	63000	247	42000	
8	4480	27	327	38000	171	17500	64000	241	41600	
9	4910	29	384	40600	202	22100	58000	219	34300	
10	5560	46	691	40600	202	22100	,,,,,,,,,,			
11	6120	57	942	41800	211	23800	52000	165	23200	
	5920	20	320	44900	235	28500	44800	111	13400	
12		20	297	52000	390	54800	43400	95	11100	
13	5500	21	303	58000	653	102000	46400	104	13000	
14	5340	28	423	53000	444	63500	47800	118	15200	
15	5600	26	423	73000	444			-		
16	6350	30	514	45000	232	28200	42400	96	11000	
17	6590	28	498	37200	128	12900	36800	88	8740	
18	6490	30	526	31600	100	9210	33600	71	6440	
19	6250	19	321	27900	73	5500	32300	57	4970	
20	6390	34	587	25800	61	4250	32400	51	4460	
••	7500	47	952	25200	54	3670	34600	60	5610	
21	9030	77	1880	24500	53	3510	38800	83	8700	
22		113	3200	25100	64	4340	44600	116	14000	
23	10500	142	4830	28200	86	6700	50000	152	20500	
24	12600		8200	34800	165	15500	53000	197	28200	
25	15500	196	8200	74600		-				
26	17900	264	12800	45000	307	37300	52000 47100	243 168	34100 21400	
27	17200	101	4690	54000	326	47500		103	10900	
28	16300	53	2330	64000	373	64500	39200	72	6510	
29	15200	52	2130	67000	692	125000	33500		4910	
30	14600	32	1260	63000	446	75900	30300	60	4410	
31				60000	290	47000				
TOTAL	235420		49397	1206000	••	943730	1419000		596640	

TABLE 18.16 SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1970 TO SEPTEMBER 1971

				AUGUST		SEPTEMBER			
DAY	MEAN Discharge (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
1	29900	55	4440	17300	48	2240	8100	17	372
2	30000	59	4780	17400	35	1640	6500	12	275
3	29800	51	4100	18000	15	729	8570	12	278
4	28900	48	3750	17500	11	520	8350	16	361
5	27000	60	4370	17000	14	643	7940	14	300
6	25300	54	3690	16500	12	535	7610	23	473
7	24400	52	3430	16000	12	518	7400	7	140
8	22700	43	2640	15500	8	335	7500	10	203
9	21000	81	4590	15000	12	486	7830	15	317
10	20800	43	2410	14500	8	313	7500	17	344
11	24900	36	2420	14000	11	416	7120	18	346
12	28500	61	4690	12900	8	279	7080	10	191
13	27700	43	3220	12100	5	163	6910	10	187
14	25300	38	2600	11600	7	219	6940	11	206
15	24300	40	2620	11100	8	240	6630	9	161
16	24600	41	2720	10600	8	229	6350	7	120
17	25800	55	3830	10100	6	164	6090	5	82
18	27200	67	4920	9610	7	102	5960	16	161
19	26800	48	3470	9220	7	174	5830	10	157
20	26800	48	3470	9200	6	199	5730	8	124
21	27700	44	3290	8800	14	333	5660	7	107
22	27800	40	3000	8600	13	302	5530	10	149
23	27300	40	2950	8600	9	209	5440	12	176
24	26500	36	2580	8800	10	238	5260	15	214
25	25800	32	2230	8700	6	188	5120	11	152
26	23700	25	1600	8300	10	224	5060	10	137
27	20900	26	1470	8000	12	259	5000	9	122
28	19500	29	1530	7600	9	185	4970	8	107
29	19000	33	1690	7400	13	260	5060	13	178
30	18600	28	1410	7500	22	446	5060	10	137
31	17700	26	1240	7700	20	416	-		
TOTAL	776200		95150	365130		13284	146120		6277
	DISCHARGE F SUSPENDED-S		FS-DAYS) Scharge for Yea	R (TONS)					4832360 1721557

	OCTOBER				HOVINGBER		DECEMBER			
DAY	MEAN DISCHANGE (CFS)	MEAN CONCEN TRATION (NG/L)	SED IMENT DISCHARGE (TOMS/DAY)	MEAN DISCHARGE (CPS)	MEAH CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TOMS/DAY)	MEAN DISCHARGE (CFS)	REAR CONCEN- TRATION (NG/L)	SEDIDUMIT DISCHARGE (TOMS/DAY)	
1	4900	12	159	3900	5	53	3400	10	92	
2	4900	9	119	4000	3	32	3300	8	71	
3	4800	11	143	4000	7	76	3200	7	60	
Ā	4700	8	102	4100	11	122	3000	9	73	
5	4600	8	99	4400	7	83	2900	4	31	
6	4700	8	102	4300	6	70	2800	7	53	
ž	4900	ă	106	4000	4	43	2800	11	83	
8	5100	8	110	3800	7	72	2700	15	109	
9	5200	10	140	3700	5	50	2300	26	161	
10	5200	9	126	3900	5	53	2400	11	71	
ĩi	5100	7	96	4100	11	122	2500	8	54	
12	5000	ė	122	4400	5	59	2300	7	43	
13	4900	6	79	4400	7	83	2200	12	71	
14	4900	4	53	4400	6	71	2200	10	59	
15	5100	i	96	4400	6	71	2800	7	53	
16	5200	6	84	4300	6	70	2700	7	51	
17	5100	5	69	4200	4	45	2600	13	91	
18	4900	ĩ	40	4100	5	55	3000	6	49	
19	4700	ž	51	4000	6	65	2800	4	30	
20	4600	3	37	3900	10	105	3000	8	65	
21	4700	Ĭ.	51	3900	7	74	3000	7	57	
22	4700	,	89	3900	Š	53	3000	7	57	
23	4600	<u>,</u>	75	3900	5	53	3200	7	60	
24	4500	Š	61	3800	14	144	3200	4	35	
25	4500	3	36	3800	17	174	3000	4	32	
26	4500	•	61	3700	7	70	3000	5	41	
27	4500	5	61	3600	'n	68	2700	4	29	
28	4600	Ã	50	3600	5	49	2600	5	35	
29	4400	i	83	3500	5	47	2500	8	54	
30	4100	Ś	55	3500	6	\$7	2400	7	45	
31	4000	6	65				2500	5	34	
TOTAL	147600		2620	119500		2189	86000		1849	

TABLE 18.18 SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1971 TO SEPTEMBER 1972

	JANUARY				PEBRUARY		MARCH			
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY) 1	Mean Discharge (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY) 1	MEAN DISCHARGE (CPS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	
1	2500	2	14	2400	3	19	4400	16	190	
2	2600	2	14	2600	2	14	4500	12	146	
3	2800	3	23	2800	3	23	4400	8	95	
4	3000	5	41	3000	2	16	4200	6	68	
5	2900	7	55	3100	3	25	4000	Ř	86	
6	2700	5	36	3000	2	16	4200	8	91	
7	2600	3	21	2900	Ā	31	4200	ž	79	
8	2600	ī	7.0	2800	Ä	30	4200	11	125	
ğ	2600	5	35	2700	1	22	4200	- 8	91	
10	2600	5	35	2600	ă	28	4100	10	111	
11	2500	Ā	27	2500	I I	27	4200	18	204	
12	2300	ž	19	2500	I	27	4400	21	249	
13	2200	ž	18	2700	I	29	4600	15	186	
14	2100	5	11	2900	7	39	4700	19	241	
15	2100	-	ii	3000	í	32	5200	21	295	
16	2100	3	17	3200		43	5300	27	386	
17	2200	ž	24	3500	- 2	57	5800	26	407	
18	2300	•	12	3500	4	38	6000			
19	2300	:	31		:			33	535	
20		,		3300		53	6300	31	527	
	2400		13	3000	2	41	6600	29	517	
21	2900	•	31	3400	•	46	4700	32	406	
22	3500	2	47	3500	۶	47	2000	33	178	
23	3400	3	28	3500	4	38	2100	30	170	
24	3100	3	25	3300	3	27	2100	25	142	
25	2600	2	14	3100	4	33	2200	24	143	
26	2500	4	27	3100	3	25	2200	19	113	
27	2300	2	12	3100	4	33	2200	17	101	
28	2000	1	5.4	3700	8	80	2200	19	113	
29	1900	5	26	3900	18	190	2200	20	119	
30	2000	2	11				2600	30	211	
31	2200	3	18				2600	33	232	
TOTAL	77800		708.4	88600		1129	122600		6357	

KOSTEMAL RIVER AR CORPLAND, IDAMO DAILY SUSPENDED SEDIMENT, MATER YEAR COTORER 1967 TO SEPTEMBER 1968

TABLE 19.1

TABLE 19.2

	OCTOBER				NCASABEE		CECEPBER		
ney	WEAR OTSCHARGE (CFS)	MEAN CONCEN- TRATION (MG/I I	LOAC (TONS)	MEAN Discharge (CFS)	HEAR CONCEN- TEATION HIGHLI	LOAD (TONS)	MEAN DISCHARGE (CFS)	MEAN CCRCEN- TRATION (PG/L)	LCAD (TCAS)
		12	172	6550	2	36	4480	4	48
1	5300	1.4	100	667C	ī	18	461C	4	5C
2	5280		87	665C	i i	iñ	4660	4	50
3	5350		74	681C	•	18	4740	6	77
4	5510				i	16	5260	4	57
5	5560		75	662C	•		2200	•	
6	5740		93	624C	ι	17	506C	6	E2
7	541C	4	58	5 8 S C	ı	16	5070	5	68
	5350	4	58	555C	ı	15	504C	5	68
5	5350	5	72	5360	1	14	464C	4	\$C
10	9150	4	56	53CC	1	14	4640	3	38
			56	6180	1	17	4690	12	15C
11	523C	•		626C	2	34	4940	8	107
12	5510	8	119		.	34	4590	18	223
17	5870	7	111	622C	2	49	3870	-6	43
14	ellC	8	132	6C5C	,	47	355C	4	38
15	6490	6	105	586C	-	Ψ,	3330	•	
16	626C	8	135	601C	2	32	305C	4	33
17	5890	8	127	63CC	2	34	3000	2	16
18	5540	6	90	628C	4	68	305C	4	33
15	545C	ř	1 04	6280	5	85	312C	5	42
20	549C	i	59	59CC	3	48	3250	6	53
70	3446	•	,,	,,,,				_	
21	5250	6	85	5820	8	126	3450	6	56
22	5580	7	105	574C	6	93	3700	4	40
23	5580	5	75	552C	4	60	450C	•	49
24	5970	í	16	515C	4	56	4680	4	51
25	5770	ī	16	512C	5	69	55 ec	2	30
-				5040	4	54	6360	4	69
26	5840	1	16		ž	26	6320	2	34
27	556C	1	15	4 8 2 C	4	50	6000	4	65
26	6410	Ţ	17	467C	- 7	50	573C	è	139
29	7300	ı	20	459C		74	546C		59
3 C	6530	4	71	4570	6		5500	I	59
31	6150	2	33		~-		3300	•	
TOTAL	17782C		2352	17410C		1290	142590		1997

		Y SAUPAL			FERRUARY			PARCH	
		MEAN			MEAN			MEAR	
	MEAN	CONCEN-		MEAN	C THE EN-		MEAN	CCNCLL	
	DISCHARGE	TRATICA	LCAC	C15C+APGF	TOATION	LOAD	DISCHARGE	TRAILON	LCAD
D4 Y	1 (65)	(MG/L)	(TONS)	(CFS)	(MC/F)	(TONS)	(CFS)	STORY,	(TCAS)
1	5420	4	59	4850	2	26	7400	10	200
2	4540	6	74	520C	5	70	7400	8	160
3	4150	7	23	56QC	6	91	75 C C	8	162
4	3700	2	20	45CC	4	67	7900	6	120
5	3700	3	30	7300	5	99	8600	15	348
6	3600	2	21	7660	8	l 52	9400	10	254
7	3940	2	21	65CC	8	140	10200	10	275
8	4010	1	11	65CC	7	117	10100	16	436
9	4050	1	11	6000	3	49	9600	9	233
1 C	4080	2	22	5800	2	31	9130	10	247
11	4040	5	22	56CC	4	60	8470	8	163
12	3580	2	21	55CC	3	45	7920	12	257
13	3880	1	10	53CC	4	57	7570	10	204
14	4000	1	11	52CC	2	28	7330	7	139
15	43CC	1	12	5080	2	27	7270	8	157
16	45C0	1	12	5060	1	14	7120	8	154
17	47C0	2	25	506C	4	55	7430	12	241
1.6	4650	2	25	510C	3	41	772C		250
19	46CC		37	5200	10	140	7710		2 1 C
20	4600	3	37	54CC	•	58	7500		14C
21	48CC	2	26	56CC	10	151	7310		14G
22	5170	2	28	61CC	4	66	71 OC		120
22	5500	4	59	660C	12	214	697C		54
24	5600	6	91	72EC	11	214	7060		110
25	56C0	6	91	#50C	14	310	722C		14C
26	5500	5	74	eccc	20	432	7500	9	182
27	463C	5	63	76CC	19	390	7750	12	251
28	42CC	6	68	76 CC	22	451	7920	14	299
29	4140	12	134	75CC	12	243	9170	15	371
30	43CC	1	12	••			10600	23	EEC
31	4600	1	12				11400	13	400
TハマAL	138720		1162	177610		3838	253276		7145

A P P P

STATE SCHOOL PART AND COTORER 1967 TO SEPTEMBER 1968

					44.4			JLAE	
		APRTL							
					U-AR			PEAN	
		WEAR		4524	CUMEN-		MEAR	CCACEA-	LCAD .
	MENN	CCACFR-	LOAS	CISCHARGE	TEATION	LTAD	DISCHARGE	TRATION	ITCASE
	DI SCHAPGE	TRATICA	177653	15.621	(8676)	(TCNS)	(CFS)	(PG/L)	11(43)
DAY	1055)	(4671.)	4.14.21	** **				85	11500
			386	15900	41	1760	5030C	67	11500
1	11066	13	421	19800	40	2140	48900	140	2000
2	10400	15	311	21200	50	2860	534CC	304	541CC
3	561C	12	794	21700	60	3520	65 900	563	11766
4	9090	15	188	22400	44	2660	742 OC	763	111000
5	6720	•	fac	2.444					104600
				27600	14	707C	157.30	561	46500
é	856C	10	231	\$\$1CC	24	1793	434CC	270	21766
7	827C	12	268	21 COC	18	1020	58300	136	
	PGIG	5	195	20400	17	667	55 9 GC	126	19300
ò	7590	6	123	21000	ii	737	5550C	115	11500
10	741C	4	160	21000	• -				
•				21.000	24	1420	571 OC	132	26460
11	7620	9	165	5740C	20	1910	59000	148	336CC
12	836C	10	226	23900	ΑÏ	2670	59900	177	286CC
ij	8640	5	117	368CC	46	4330	5910C	209	334CC
14	976C	7	166	31500	120	95 00	5330C	126	10100
14	855C	12	279	15500	1.30	7,40	*****		
						10400	460CC	96	13566
Lé	8820	12	2 96	36500	110	12700	40700	85	9350
17	A 580	5	116	36000	126	6670	3050C	67	656C
10	844C	6	137	36100	۶۱	10600	36800	76	£17C
	8050	6	131	384CC	105	12400	41900	104	118CO
19	8030	4	87	411CC	117	15400	4,		
20	80.70	•				30300	48200	119	15000
	eC30	6	130	435CC	258		513CC	136	FEECO
21	7920	- 5	107	47666	510	56600	48100	119	15500
2.2	7530	ż	142	5350C	107	15700	4410C	90	10700
23	748C		121	55766	143	23100	41200	70	1150
24		š	62	59600	125	50100	41200		
75	758C	•					34100	58	6120
		7	145	552CC	1 34	\$0000		62	4610
26	7650	10	216	523QC	147	20800	39500	70	8320
27	7950	14	311	516CC	123	17100	44000	120	LACCO
28	8240	ii	263	51400	53	15000	4830C	101	12266
5 c	8560		1050	524CC	113	16000	45100		
3 C	11400	34	10.50	524CC	107	15100			
31				24 142					717260
TO+41	255320		6854	1114600		315844	1541300		,,,,,,,

TART 9	10 4

NATLY SUSPENDED SEPTMENT, WATER YEAR OCTOBER 1967 TO SEPTEMBER 1968

		MAFA			AUGUST			SEPTEMBER	
DAY	PEAR DISCHARGE {(FF)	MFAN CORCEN- TO ATIOR (MG/L)	LCAD (TONS)	WEAR CISCHARGE ICFSI	MEAN CONCEN- TOATION (MG/L)	LOAD (MEAN DISCHARGE (CFS)	PEAN CENCEN- TRATION (PG/L)	LOAC (TCNS)
1	39000	50	84 CO	15500		330	9160	7	174
ż	31700	72	6550	14900		320	867C	7	164
•	30900	54	4450	13900		300	85CC	5	115
4	29900	42	3380	13300		290	8510	ā.	92
3	31 400	39	3310	13100		280	8370	4	50
ŧ	33900	45	4120	12900		279	8050	5	109
7	35900	49	4750	13000	6	211	772C	6	125
	3740C	59	5960	13000	10	351	7470	6	121
ģ	38200	67	6910	12600		272	7590	4	82
10	36700	70	6940	12000	12	389	7720	4	63
11	34800	63	5920	11300		270	797C	4	86
12	334GC	53	4780	11000	7	208	7740	4	64
13	31600	44	3750	10900		235	762C	7	144
14	30 7CC	33	2740	10600	8	229	767C	11	22E
15	29200	10	2370	10700	7	2 02	75 70	•	65
l é	25766	20	1390	11000	13	386	7820	6	127
17	23100	17	1060	11500	7	217	7750	4	84
18	21 70C	16	937	12100	4	131	857C	6	139
10	2050C	16	586	11900	6	193	11300	5	153
20	19400	12	629	11200	6	191	11500	•	124
21	18800	11	558	10900	7	206	11400	6	165
22	19700	16	851	10766		170	11100	6	160
27	20400	10	551	FOECC		170	11000	4	119
24	19670	•	423	10500		140	10500	6	170
25	18900		410	10000		110	10200	•	165
26	18300		400	9490		77	1 01 00	•	109
27	17400		360	9050		49	9740	4	105
2 =	16500		360	948C	2	51	9740	•	105
29	16000		350	97CC	1	76	988C	2	53
3.0	15900		340	10000	t	27	9990	3	€1
31	15500		340	10000	2	54			••
TOTAL	8138CC	**	84195	35702C	**	6354	270940		2678
	DISCHARGE I		CFS-DAYS)						5417090
	1010 CCB W	PAG 440464							1161640

TOTAL DISCHARGE FOR YEAR (CES-DAYS)

DAILY SUSPENDED SEDIMENT, MATER ALTE CELCHIE 1968 IC SEPTEMBER 1869

			-							
		CCTOBER			MOVEMBER		CECEMBER			
	PFAN DISCHARGE	MEAR CONCEN- TRATION	LCAC .	MFAN Pischaage	VEAR COMCEN- TEATION	LOAC ,	MEAN DISCHARGE	MEAN CCAGEN- TRATION	LCAC 1	
DAY	(CFS)	(MG/L)	(TONS)	(CFS)	(46/L)	(TONS)	(CFS)	(MG\F)	(TCAS)	
1	9990	2	54	9350	4	100	7520	2	41	
÷	9850	ī	27	955C	4	t 00	7300	2	34	
5	9530	ž	51	945C	,	77	6RRC	2	.37	
4	9030	4	98	935C	3	76	7800	6	12C	
3	9870	ž	48	9150	3	74	6130	9	158	
		2	47	886C	3	12	782C	2	42	
6	8680	2	46	853C	3	69	703C	5	95	
7	R580	4	93	8240	•	67	6590	2	36	
8	8580	-	91	794C	,	64	6700	8	145	
9	8460	<u> </u>		795C	á	64	70CC	4	76	
10	8170	5	110	7476	,				_	
	7890	2	43	762C	3	62	797C	2	43	
11	8270	i	134	8450	5	110	865C	6	14C	
12		3	72	9550	ģ	23C	8560	12	2 E C	
13	8590	4	100	966C	6	160	804 C	14	200	
14	9320		100	9060	Ä	98	7180	12	230	
15	9420	4	100	7000	•			_		
16	9260	3	75	8690	3	70	726C	2	39	
17	923C	ž	75	84CC	3	69	7380	3	é C	
ié	876C	3	71	RCEC	2	44	8080	2	44	
	8600	5	7 C	773C	2	42	7000	2	2 €	
19	8270	ś	67	7600	2	41	703C	2	38	
50	8270	,						•	25	
21	8440	4	91	716C	2	39	6490	2		
22	8240	3	67	756C	3	61	631C	2	34	
23	8110	2	44	8970	10	240	6250	2	34	
24	7940	ž	43	9640	9	230	5940	2	22	
25	7840	5	42	934C	4	100	615C	4	66	
23	1840	•							67	
26	8060	3	65	875C	3	71	619C	4	47	
27	8650	5	120	8300	3	67	585C	3		
28	8750	4	94	8G4C	1	65	5960	3	46	
29	8920	4	96	772C	2	42	4880	3	40	
3C	8810	3	71	7450	2	40	4220	3	34	
	9250	ś	120				3150	2	17	
31	7270	,				****	211200		2505	
TOTAL	270920		2326	256220		2643	21128C		2363	

TABLE 19.6		DATLY	SUSPENDED	SEDIMENT, MAT	TEP YEAR CO	TOBER 1966	TO SEPTEMBE	F 1969	
		JARUARY			FFRPU40Y			PARCH	
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	LTAC (TONS)	MFAN Discharge (CFS)	WEAR CONCEN- TRATION (MG/L)	LOAD (TOKS)	MEAN OISCHARGE	MEAN CONCER- TRATION	LCAG
				10	(~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111.621	(CFS)	(P G/L)	(TCAS)
1		1	15	41CC	2	22	460C	4	£C
7		5	43	43CC	3	35	4706	- 7	
3		6	60	4500	ý	36	48CC	7	51
4	4100	5	55	47CC	á	51	4900		52
5	4800	5	65	4800		52		•	5.3
		-		1000	•	72	500C	•	54
	5400	5	73	4900	4	53	5000		
7	6000	5	81	SCCC	7	54		•	54
	6300	5	85	SCCC	7		50CC	4	54
9		Ś	66	5000		54	5000	4	54
10		Ś	90	5000	4	54	50CC	4	54
- •		,	70	7000	4	54	49CC	4	52
11	4700	5	90	4900					
12	67CC	4	72	4900		53	49CC	4	53
13	6600	ž	53	4800	•	53	4900	4	53
14	6600	3	53		4	52	4900	4	53
15	6400	3		4800	4	52	490C	4	53
•.,	0400	,	52	48CC	4	52	4900	4	53
16	6300	3	51	4800					
17	6100	á	49		4	52	500C	5	68
iè	6000	3		49CC	4	53	5100	7	Se
19	57CC		49	4900	4	53	518C	8	110
20		3	46	4900	4	53	6000	19	2CE
20	5300	1	43	4900	4	53	700C	20	378
21	4900	_							2.0
		3	40	4800	4	52	7300	21	414
22	4600	2	25	48CC	4	52	73 OC	18	355
23	43CC	2	23	47CC	4	51	7200	16	211
24	4190	2	23	47CC	4	śί	7200	13	253
25	4100	2	22	47CC	4	51	720C	iź	233
34	4000	_						••	233
26	4000	2	22	46CC	4	50	7270	10	156
27	4 C C O	Z	72	4600	4	50	736C	12	238
28	4000	2	22	46CC	4	50	8360	-6	
29	4000	2	22				9690	4	125
30	4000	2:	22				10800		105
31	4000	2	22				12400	14	175
							15400		465
TOTAL	. 15796C	••	1478	133400		1398	193760		4638

DATEN SUSPENDED SENTWENT. PATER YEAR CCTOPER LOOK TO SEFTEMBER 1964

	APPII				YAY		JLAF			
		MEAR			ME VV			PEAN		
	MEAN	CONCEN-		HEAR	CONCEN-		MEAN	CCACEA-		
	DISCHARGE	TRATICA	LOAD	C15CHARGE	TEATION	FUAL 1	DISCHAPGE	TRATICN	LCAC	
DAY	(CFS)	(4G/L)	(TONS)	(CFS)	(#G/L)	(TONS)	(CFS)	(*6/L)	(tcks),	
1	158CC	30	1280	396CC	60	6420	7410G	130	SECCC	
2	17400	28	1320	374CC	44	4440	67500	150	273C0	
3	179C0	22	1060	34900	46	4330	6460C	130	241CC	
4	19200	14	688	333CC	37	3330	68600	161	24ECC	
5	18000	14	680	32300	35	3050	7480C	173	349CC	
6	19400	24	1260	332CC	29	2600	60400	250	543CC	
Ť	22100	34	2030	368CC	4C	397C	8550C	345	756CC	
8	24300	84	5510	416CC	52	5940	86500	364	85CCC	
9	24300	62	5380	463CC	70	6750	81 OCC	360	7 E / CC	
10	24700	66	44.00	5280C	78	11100	71900	221	42500	
11	25700	74	5130	67100	170	29000	64 7 C C	204	356CC	
iż	266CC	84	6030	71500	250	48000	62800	156	265CC	
13	26500	ñ2	5960	797CC	350	75000	61400	176	292CC	
14	275CC	91	6760	854CC	400	92000	572 Q C	136	21CCC	
15	28100	75	4690	883CC	530	1 30000	5010C	140	18500	
16	27900	52	3920	88000	530	130000	4440C	93	11100	
17	2820C	30	2280	86866	5 30	120000	41 000	85	541C	
ie	2960C	78	6230	71100	295	5660C	3950C	76	611C	
19	32366	90	7850	648CC	150	26200	39400	75	75 E C	
20	32800	16	7790	613CC	162	26800	4080C	82	9030	
21	31,900	90	7750	581CC	174	27300	44500	75	SCIC	
22	32000	85	7340	560CC	130	19700	51100	120	17CCC	
23	323CC	110	96 00	564CC	88	13400	54600	140	21000	
24	39800	300	32000	609CC	130	21400	52600	180	256C0	
25	5280C	580	93000	66900	161	29100	5210C	122	17266	
26	52300	340	46000	745CC	248	5390C	54000	125	16200	
27	46600	200	25200	81700	247	54500	602 CC	137	223CC	
28	4130C	112	12500	836CC	301	67900	63300	200	34CC0	
29	40500	72	7870	7800C	280	59000	63200	150	256CC	
30	41000	79	8750	7710C	268	55800	62100	182	30506	
31		***		79100	157	33500			••	
TOTAL	698200		323250	1913500		1222930	18139CC		675E4C	

TABLE 19.8

DAILY SUSPENDED SEDIMENT, MATER YEAR COTOBER 1968 TO SEFTEMBER 1969

		JULY			AUGUST			SEFTEMBER	
	MEAN	MEAN-		MEAN	MEAR CONCEN-		MEAN	PEAN CCNCEN-	
	DISCHARGE	TRATICA	LOAD	DISCHARGE	TOATTON	LTAD			
DAY	(CFS)	(46/L)	4 TONES !				DISCHAPGE	TRATION	LCAD
041	(CFS)	1-6/1	(TONS)	(CF\$)	(MBAL)	(TONS)	(CFS)	(PG/L)	(TCASI
1	586C(122	1 93 00	16500	22	980	7950		172
2	53500	92	13300	154CQ	10	746	7620	6	123
3.	5100C	90	12400	148CC	27	879	7140	ă	154
4	49400	90	12000	144CC	Ī6	622	7070	10	เร่า
5	49400	84	11200	1380¢	14	522	692C	. 6	149
6	4630C	96	12500	13400	10	362	6990	6	113
7	45700	78	9620	13000	12	456	699C	ĭ	132
8	43000	50	6730	12600	ió	340	7010	á	
9	40200	69	7490	12600	10	340		-	1:1
10	37600	82	8320	11900	10		663C	14	250
	37000	92	8320	11700	4	289	654C	21	371
11	35900	62	6010	11500	12	404	62 CC	22	368
L2	3500C	36	3400	10900	12	353	6200	Ĩ.	361
12	343C0	28	2590	10000	iž	350	5920	12	192
14	33200	ŽĬ	1880	10900	12	353	6140	iõ	166
15	30500	21	1730	10766	12	347			
		••	1130	10,00	12	347	6330	8	127
16	28300	20	1500	10000	12	324	6390	7	121
17	26400	20	1400	10000	8	216	6770	Ť	126
18	24 800	19	1300	982C	11	292	6790	ż	37
19	2350C	20	1300	9980	iż	323	6720	2	ie
20	22500	žõ	1200	9520	ič	257	6650	i	10
						_	5570	•	
21	21 0CC	20	1200	9636	12	293	6830	3	::
22	21300	22	1270	9030	6	195	722C	5	57
23	212CC	22	1260	8840	10	239	7310	5	59
24	20 4 0¢	24	1330	876C	ŧ	189	7830	6	120
25	19600	50	1070	876¢	•	189	8040	6	130
26	19400	13	681	855C	7	167	7990	6	130
27	19400	17	900	8760	è	189	825C	ě	iec
28	19400	13	688	876C	10	237	8150	ě	180
29	18500	14	699	8940	12	290	7900	i	
30	17400	iš	658	A 520					171
31	17000	22	1010	8340	6	136 135	7900	10	213
TOTAL	987300		145936	338620		11013	212380		4655
TOTAL	CISCHARGE F	OR YEAR E	CFS-DAYS)						7387540
	1 516 CCS WE								1 30 1340

TOTAL CISCHARGE FOR YEAR (CFS-DAYS)
TOTAL LOAD FOR YEAR (TOMS)

540549C

TARLE 19 9	CHEBENDED_SED IMENT	DISCHARGE.	BATER VE	AR OCTOPER	1969 TO	SEPTEMBER 197	٥

	CCTCBER				MOVEMBER		CECEMBER		
[AY]	(UEZ) DISCHT#CE neWi	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONSZERY)	MEAN DISCHARGE (C=5)	VEAR CONCEN- TPATION (MG/L)	CFDIMENT DISCHAPGE (TCNS/CAY)	MEAN DISCHAPGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SECIMENT CISCHARGE (TCNS/CAY)
1	8250	10	223	5140	4	56	4170	3	34
ż	9300	- 5	126	5C2C	2	27	4440	4	48
3	9850	Ą	213	5090	2	27	4540	4	49
4	9950	6	16C	4840	6	78	4730	4	51
5	9260	LÕ	250	SCRC	7	96	4780	4	52
	8740	Ą	189	539C	3	44	4640	4	5C
6	8400	- 2	91	5490	4	59	4480	4	51
7	7940	5	43	5740	i i	62	4520	4	45
8			63	563C	5	76	4420	•	48
9 10	7790 7670	3	21	5530	ś	75	4330	•	47
				5490	4	59	4250	•	46
11	7720	1	21			58	4130	1	45
12	7460	,	4 C	5400		43	4320	7	41
13	7200	1	15	531C	3	58	4460	7	46
14	6830	5	92	5350	•		4330	7	33
15	6720	3	54	5310	8	115	4330	•	41
16	6600	2	36	5200	7	98	4370	4	47
17	6330	1	17	5250	5	71	4510	•	49
19	6270	2	34	5250	4	57	4540	•	49
19	6230	3	5 C	5190	4	56	4350	4	47
20	6130	4	66	515C	3	42	4220	•	46
21	5870	1	16	5140	3	42	4160	•	45
22	5930	i	16	5380	4	58	3980	4	43
23	5790	Ţ.	16	5240	4	57	4000	3	32
24	5630	ž	30	5070	4	55	4010	•	43
25	5650	î	15	5230	5	71	397C	•	43
26	5870	1	16	527C	2	28	3800	3	31
20 27	5710	i	15	4900		53	3670	•	59
	5580		60	4800	i i	52	3470	ž	19
28		2	29	4650	6	15	3430	i i	37
29	5410		28	4320	5	56	3270	j	26
20 31	5200 5080	2 2	27	1320			3150	š	26
TETAL			2076	155840		1806	129660		1354

TABLE 19.10	SUSPENDED-	SEDIMENT DI	SCHARGE.	SATER Y	EAR OCT	TC#FR 1969	TC SEPTFMBER	1970
	YPAUAAL			FER	RUADY			PARC
META	MEAN CONCEN- SEC	IMENT	WFAR		FAN NCEN-	SECTMENT	ME AA	MEAN

	JANUARY				FERRUARY		PARCH			
DAY	MEAN CISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SECIMENT DISCHARGE (TONS/CAY)	MEAN DI SCHARGE (CFS)	FFAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MFAN DISCHARGE (CPS)	MEAN CCACEN- TRATION (MG/L)	SECIMENT CISCHARGE (TCNS/CAY)	
ı	3060	4	33	4100	4	44	3780		41	
2	2990	2	16	4140	4	45	3700		40	
3	2900	2	16	4200	4	45	3550	,	47	
4	2970	4	31	4160	4	45	3620		59	
5	2730	?	15	4180	4	45	3400	i	55	
6	2630	3	21	4180	4	45	3650	4	39	
7	2690	2	15	4280	4	44	3760	1	61	
8	2630	2	14	4220	4	46	4040	- ;	76	
9	2560	3	21	4240		46	3920		64	
10	2580	2	14	4300	•	46	3010	•	<u> </u>	
11	2650	4	29	4260	4	46	3750	,	71	
12	2760	4	3¢	4320	4	47	3850	LĠ	104	
13	?940	4	12	4320	4	47	3860	-7	• • • • •	
14	3320	2	18	4500	4	49	3920	I	**	
15	3170	2	10	4490	4	48	4140	i	17	
16	3600	4	39	4650	7	88	4330	10	117	
17	3390	4	37	4710	6	76	4590	10	124	
18	1490	4	38	4610	7	91	4540		• • • • • • • • • • • • • • • • • • • •	
19	3399	4	37	4730	7	89	4480	10	121	
20	3510	4	3.0	4610	6	75	4370	.,	'54	
21	3560	4	30	4540	9	110	4330	10	117	
22	3680	4	4 C	4540	9	110	4430	iž	144	
23	3740	•	40	444C	10	120	4900	ii	134	
24	1880	2	21	4230	5	57	4670	19	240	
25	4000	•	43	417C	6	68	5150	iż	147	
26	4040	4	44	3900	6	63	5000	14	192	
27	4080	4	44	3920	6	64	5010	ii	149	
28	4260	4	46	3650	6	62	4970	Ĭš	100	
29	4190	4	45	••			5170	iè	199	
30	4140	4	45				9230	. 12	167	
?1	4020	4	43				5140	io	139	
TCTAL	103640		961	120560		1763	132760		3343	

TCTAL

17C 166 118 11?

5 6 6

APPIL				467		JUNE						
	MEAN	WEAM CCACEN-	SECIMENT	PEAN	MEAR CONCEN-	< FDIMENT	MEAN	MEAN CENCEN-	SECIPENT			
	DI SCHAP GE	TRATION	DISCHARGE .	DISCHARGE	TRATION	OISCHARGE .	DISCHARGE	TRATION	C1 SCHAGE			
DAY	(CFS)	{46/L}	(TCMS/CAY)1	(CFS)	(46/L)	(TOMS/CAY)	(CFS)	(PG/L)	(TCAS/CAY)			
1	4930		104	7676	6	115	38100	63	648C			
ž	4980	8	100	7290	6	118	37300	49	4930			
3	5140		111	9C2C	6	146	40400	40	436C			
Ă	4900	8	106	1240C		268	48600	85	11200			
5	5010	7	45	18200	26	1280	57400	173	268CC			
	5170	•	124	2e166	83	585C	62300	217	365C0			
ž	6100	17	200	31900	140	12100	64000	288	45800			
i	7240	12	235	34200	151	13900	45500	288	484CC			
·	7420	ii	220	34600	139	13000	589CC	202	32100			
10	7650	15	248	34000	99	9090	55400	165	247CC			
11	8450	14	327	32600	69	607C	50700	142	15400			
12	8500	10	229	36366	54	442C	44800	92	11100			
13	9300		179	27300	39	287C	38200	83	856C			
14	8070	6	131	24500	27	1790	33600	50	454C			
19	7550	6	122	22600	24	1460	35500	50	4350			
16	7040	3	57	22 6 0C	20	1220	35100	50	4740			
17	444.0	3	54	27500	35	264C	39400	43	4570			
10	6360	ă.	65	38100	110	11300	42500	85	975C			
19	6200	j	50	44100	140	167CC	43300	92	108CC			
20	6470	5	67	45200	185	229CC	41600	100	11200			
21	4430	•	72	45200	135	16500	39600	96	10300			
22	7060	ż	133	45600	112	13800	375C0	54	547C			
23	7310		150	46500	112	14100	35600	36	34£C			
24	7330	Ť	139	48900	112	148G0	34100	25	2300			
25	7710	•	167	50100	143	19300	31800	15	125C			
		_										

57C00 57C00 6G400 56200 47800 41700

108257C

142C 118C 14C0 1240 82C

26316C

427017C 726346

TABLE 19.12 SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1969 TO SEPTEMBER 1970 JULY **AUGUST** SEPTEMBER MEAN CONCEN-TRATION (MG/L) WEAR CONCEN-TRATION (MG/L) WEAN CONCEN-TRATION MEAN DISCHAP GE (CFS) SECIMENT DISCHARGE (TONS/CAY) PEAN SEDIMENT MEAN DISCHARGE SECIPENT DISCHARGE (CFS) CISCHARGE (TCNS/CAY) CISCHARGE (TCAS/EAY) DAY (CFS) 24200 23200 21900 20700 10500 10700 10100 9730 784 877 5710 5630 5810 6000 12 14 10 10 202 191 158 46 16 16 559 i 20400 19800 18600 17600 496 428 402 170 232 212 94 527C 17 16 111 177 8600 8720 5980 5880 5880 16600 16000 15300 10 538 432 248 394 12 13 14 15 89 1C1 118 98 7 4 5 65 16 15 7490 5770 7260 13300 13000 12600 12400 359 351 544 268 17 18 19 20 74 72 36 69 10 10 16 5040 4890 4870 14 12 13 13 6610 488C 11700 11400 11200 505 277 212 181 22 23 24 25 16 9 628C 33 65 49 65 17 53 35 70 558C 5870 6040 6570 6490 6510 10400 10300 10300 10600 11000 27 28 29 30 21 168 167 167 172 170 5500 32 15 184 156 6030 5780 5580 5520 45 31 15 560C 621C 5770 TOTAL 23434C TOTAL DISCHARGE FOR YEAR (FFS-RAYS)
TOTAL SUSPENDED-SEDIMENT DISCHARGE FOR YEAR (TCAS)

TABLE 19.13 SUSPENDED-SEDIMENT DISCHARGE, NATER YEAR OCTORER 1970 TO SEPTEMBER 1971

	OCT CREP				MUAEMBER		DECEMBER		
CAY	MEAN PISCHAPGE (CFS)	PEAN CCRCEY- TPATION (MG/L)	SECIMENT DISCHAPGE (TONS/CAY)	MEAN Discharge (CFS)	MEAR CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TCNS/CAY)	MEAN DI SCHARGE (CFS)	MEAN CCNCEN- TRATION (PG/L)	SEC IMENT DI SCHARGE (TCAS/DAY)
ı	5360	2	29	4890	2	26	3450	2	19
ž	5420	ž	25	485C	3	39	3540	2	19
3	5410	- Ā	58	4820	6	78	3730	3	30
4	5370	š	72	474C	3	38	3670	4	46
5	5720	Ŕ	124	475C	3	38	3580	4	39
	5590	,	106	465C	3	38	3700	•	40
6	5570 5490	5	74	4610	3	37	4720	4	51
á	5620	4	61	4520	3	37	5690	5	17
a g	5870	;	48	453C	ŝ	40	5330	5	72
10	5770	4	62	5170	3	42	497C	5	47
••	5680	2	31	5040	3	41	4900	•	53
11	5760	3	47	4960	ž	40	4500	4	49
12 13	5720	ž	31	488C	3	40	3780	3	31
14	5640	5	30	4760	ž	39	3780	3	31
15	5460	3	44	4750	3	38	4100	2	22
16	5300	3	43	4620	3	37	4330	2	23
17	5500	3	45	474C	3	38	4470	2	24
18	5220		5é	4880	3	40	4430	2	24
19	5110	3	41	5010	3	41	4280	2	23
20	5050	Š	109	5420	3	44	4220	2	23
	4860	11	144	5400	3	44	3750	3	30
21 22	5110	**	55	5290	3	43	3430	2	19
23	5140		56	4020	3	33	3150	2	17
24	5250	3	43	363C	3	29	2820	1	7.6
25	5560	á.	60	3800	3	31	2890	1	7.8
26	5410	•	58	3900	2	21	2980	2	14
27	5320	, i	5 7	3850	2	21	3130	2	17
28	5140		83	3600	2	19	3510	1	5.5
29	5020	š	54	342C	2	18	3700	2	20
20	4970	5	67	3440	2	19	3940	3	32
31	4870	4	53				4240	3	34
TCTAL	166710		1870	137340		1089	122710		744.7

TABLE 19.14 SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR CCTCBER 1970 TO SEPTEMBER 1971 JANUARY FFBRUAPY PEAR CONCEN-TRATION (MG/L) MEAR CONCEN-TRATION (MG/L) MEAN CONCEN-TRATION (MG/L) SFCIMENT CISCHARGE (TCNS/CAY) MEAN DISCHARGE (CFS) SEDIMENT DISCHARGE (TONS/CAY) MEAN DISCHARGE (CFS) MEAN SECIMENT DISCHARGE (CFS) CISCHARGE (TORS/DAY) CAY 3610 3340 3070 49 45 2710 3446 2320 1250 19300 18200 5460 5280 5480 5280 59 43 44 29 52 7C 57 37 3 2 7.1 7.4 8.0 8.7 9.5 2750 2980 329 299 174 202 7 8 9 1 2 14 27 53 ₹71C 7900 7160 749C 14 9 10 4930 4900 4910 3520 9.7 8.7 7.8 17 53 12 13 260 264 247 266 5350 5630 5550 5330 768C 101 71 60 58 2900 3080 8150 8330 8950 3910 4210 4910 \$950 10100 9570 8900 8220 17 16 19 20 300 284 264 222 42 34 40 17 4 4 3 3 1 11 11 11 10 5200 5 3 5 6 4 42 67 79 52 4890 77 58 148 129 194 165 177 177 4770 4710 4580 4710 7090 7100 6870 2 4 3 7180 6870 6540 22 23 24 25 10 10 10 5 7 7 64 38 87 87 6380 6260 6310 7*0*70 86 85 51 78 27 28 29 30 3 3 ---5420 5570 5480 5670 132 75 110 214 151 5 5 5 3 2 4 646C 7 9 9 9 14 9 6C4C --TCTAL 1361.4

	APRIL				MAY		JUNE		
DAY	MEAN DISCHAPGE (CPS)	MEAN CONCEN- TRATION (MG/L)	SECIMENT DISCHARGE (TONS/CAY)	PEAN DISCHAPGE (CFS)	MEAN CONCER- TRATION (MG/L)	SERIMENT CISCHAPGE (TONS/CAY)	MFAN DISCHARGE (CFS)	PEAN CONCEN- TRATICA (MG/L)	SECIPENT CISCHARGE (TCRS/CAY)
1	6440		14C	3C30C	54	4420	81300	333	73100
ž	6340	ì	137	31700	52	4450	77600	272	570CC
3	6290	i	136	36800	86	854C	73300	215	4260C
4	4270	,	119	45400	153	188CQ	704CC	196	373CC
š	4370	ė	134	5590C	269	40600	70300	160	31400
•	6730		145	62400	368	62 CC0	73100	207	46966
Ž	7440	Ř	161	64300	333	57800	75400	277	964CC
À	9430	15	382	64600	239	41700	76200	347	714CC
ě	11100	39	1170	66300	265	47400	75900	278	570CC
10	14500	46	1 80C	69600	298	5600C	75400	236	48000
11	16500	29	1290	71500	315	60800	70300	208	3950C
12	15600	25	105C	74100	320	64000	61500	167	277CC
13	14100	10	685	8000	347	750CC	57000	137	21100
14	13000	14	491	85300	350	80600	57400	131	2C3CC
15	12700	15	514	683CC	515	95000	58400	122	19200
16	13500	15	547	79100	409	874G0	56900	135	20700
17	14300	16	618	6640C	349	62600	51700	107	14900
18	14100	14	533	55200	252	37600	44 8CO	105	133CG
19	13400	13	47C	47700	126	16200	43900	70	8300
20	13400	14	507	42900	89	10300	42800	41	4740
21	14900	14	563	40000	40	6480	43200	55	6420
22	19100	23	1190	38000	94	964C	47200	79	16160
23	23200	41	257C	36100	60	6170	51400	83	11560
24	28500	76	5850	41500	63	7660	56000	134	20300
25	31900	114	9990	49200	86	11400	60500	139	227CC
26	35900	137	13300	58000	146	229CG	61500	177	29400
27	36600	143	14100	48400	264	48900	51300	175	242C0
20	34800	130	12200	7750C	324	67800	51800	122	17100
29	32900	10	799C	84100	362	#2200	45600	72	BEEC
30	31200	60	505C	87200	432	1 C2 COO	40300	61	664C
31				85400	410	945CC	••		
TOTAL	510530		83834	1865400		1390260	1804400		862560

TABLE 19.16		SUSPE	SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTORER 1970 TO SEPTEMBER 1971										
		JULY			AUGUST			SEPTEMBER					
		MEAN			WEAR			PEAN					
	MFAN DISCHARGE	CCRCFN- TRATION	SECIMENT DISCHARGE	PEAR DESCHARGE	CONCEM-	SENTMENT DISCHARGE	MEAN DISCHAPGE	CCNCEN- TRATION	SECIMENT CISCHARGE				
DAY	(CFS)	(MG/L)	(TONS/EAY)	(CFS)	(4G/L)	(TONS/DAY)	{C#\$}	(PG/L)	(TERS/EAY) '				
1	37500	62	6280	15500	11	579	8350	•	135				
2	36900	61	6080	19100	10	516	8730	5	110				
3	36700	54	535C	14700	17	675	9 100	5	123				
4	35900	51	494C	17200	15	697	9300	5	126				
5	344 00	55	5110	17900	12	580	9090	6	147				
6	32300	41	3500	18000	16	778	8720	7	165				
7	30700	39	323C	17700	11	526	6120	6	122				
8	29 200	36	284C	17000	9	413	7830	9	106				
•	26900	39	2830	16400	9	399	7760	3	63				
10	28000	52	3930	15700	7	297	8260	•	69				
11	27900	38	2860	15000	11	446	61C0	5	105				
12	32500	40	351C	14300		309	7710	7	146				
13	34600	40	3740	13600	8	294	7560	6	122				
14	32500	36	316C	1 2900		279	7380	•	12C				
15	29700	25	2000	12500	10	336	7410	2	40				
16	29000	22	1726	12600	11	356	7210	1	15				
17	29700	10	1440	L 1 7 0 0	9	279	6780	3	55				
10	31200	14	118C	10800		233	6510	4	76				
19	32000	16	1360	11300	9	2 75	6290	6	102				
20	31 300	17	1440	9800	12	316	6370	5	66				
21	31500	19	1670	9400	٩	220	6090	•	e6				
22	32100	19	1650	9080		196	5950	3	48				
23	31900	19	164C	294 C	7	169	5880	2	35				
24	31 200	19	1600	8940	6	145	5750	4	62				
25	29900	19	153C	9020	5	122	5620	7	106				
26	28600	14	1090	6940	6	145	5470	4	56				
27	25500	13	895	#520	9	207	5570	2	30				
28	23000	12	745	8210	7	155	5580	Z	30				
29	21600	12	70C	7980	5	108	5700	3	46				
30	21300	12	69C	7810	5	105	6020	4	65				
31	20600	11	412	8000	6	170	••		••				
TOTAL	936300	-	79372	391740	••	10297	214210		2617				
	DISCHARGE PE SUSPENDEC-S		FS-DAYS) Scharge for Yea	A CTONSI					672629C 2492046.3				

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1971 TO SEPTEMBER 1972

TABLE	19.	.17

	OCTOBER				NOVEMBER		DECEMBER		
DAY	MEAN DISCHARGE (CFS)	MEAM CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DI SCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SED IMENT DISCHARGE (TONS/DAY)	MEAM DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
1	5990	10	162	4800	2	26	4490	3	36
Ž	5840	9	142	4610	2	25	4130	2	22
3	5830	7	110	4950	3	40	4230	Z	22 23 21
4	5820	5	79	5620	3	46	3970	2	21
5	5470	4	61	5360	•	58	4100	2	22
•	5590	3	45	5440	2	29	3900	4	42
7	5470	3	46	4990	3	40	3700	3	30 18
è	5830	3	47	4700	3	38	3400	2	
ğ	5940	3	48	4340	3	35	3350	2	18
10	6020	3	49	4670	3	38	3300	2	16
11	6140	3	50	5350	3	43	3400	2	18
īž	5630	ă.	63	5610	5	76	3200	2	17
iš	5820	.	63	5870	4	63	3100	2	17
iš	6030	i i	98	5730	2	31	3150	2	17
15	6220	•	134	5710	2	31	3200	5	17
16	6300		136	5540	3	45	3500	2	19
17	5980	7	113	5220	2	28	3700	1	10
16	5790	i	94	5050	ī	14	3800	4	41
19	5560	Š	75	4880	2	26	3850	3	31
20	5770	5	78	4920	•	53	3800	2	21
21	5760	5	78	4400	•	50	3850	2	21
22	5490	Ā	61	4850	Ž	26	3850	2	21
23	5620	i i	61	4970	2	27	3900	1	īi
24	5530	4	60	5070	3	41	4000	2	22
25	5220	•	54	4980	3	40	4000	2	22
26	5670	4	61	4830	2	26	3700	1	10
27	5860	4	63	4980	3	40	3000	2	16
28	5570	ż	30	4870	2	26	2700	2	15
29	5300	Ž	29	4760	2	26	2600	3	21
30	5110		55	4660	2	25	2500	3	20
31	4740	3	38				2600	3	21
TOTAL	177730		2285	151970		1112	109970		658

TABLE 19.18

SUSPENDED-SEDIMENT DISCHARGE, MATER YEAR OCTOBER 1971 TO SEPTEMBER 1972

		JANUARY			FEBRUARY			HARCH	
DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
1	2800	1	7.6	3100	1	8.4	17300	40	2000
2	2900	•	31	3000	1	8.1	13500	31	1130
3	2950	2	16	2900	5	39	11000	33	900
•	3100	2	17	3200	8	69	9430	27	687
5	3200	2	17	3520	2	19	8610	29	674
•	3400	2	18	3670	2	20	9090	24	589
7	3500	2	19	3290	4	36	10200	22	404
•	3500	ı	9.4	3230	7	61	9520	19	488
•	3450	2	19	3410	•	83	9040	20	487
10	3380	2	18	3480	6	56	8890	26	624
11	3300	2	18	3620	•	78	10300	22	612
12	3200	1	8.6	3730	ě	60	12300	ī.	590
13	3050	2	16	3890	Ĭ	84	13500	22	002
14	2800	2	iš	4000	ž	76	14400	35	1570
15	2650	1	7.2	4050	5	55	17500	40	1090
16	2700	1	7.3	4450	7	84	17000	40	1920
17	2750	1	7.4	4970	5	67	22100	\$1	3040
10	2900	Ž	16	5400	ž	29	24800	82	5930
19	3000	2	16	5410	ī	102	27300	133	1000
20	3200	2	17	5270	ė	114	25700	140	4940
21	3700	3	30	4930	5	67	23500	77	4890
22	4300	3	35	5330	Š	72	18200	\$2	2500
23	4900	4	35 53	5300	7	100	14300	95	2420
24	4800	4	52	5220		85	14300	36	1500
25	4400	2	24	4980	i	108	15200	23	944
26	3800	2	21	4810	4	52	13700	21	777
27	3200	2	17	4990	j	40	12400	18	403
20	2800	3	23	7370	Ă	ãõ	11300	ži	441
29	2600	2	14	14500		•••	10300	13	362
30	2700	3	22			••	9670	ĬŽ	320
31	2900	1	7.8				9700	19	202
TOTAL	101830		599.3	135020		1762 6	453350	-	57746

TABLE 20. INSTANTANDOUS SUSPENDED SEDIMENT AND PARTICLE SIZE ANALTSES, KOOTENAI B. ME. REKTOND, MONT., 1968 - 1971

1		1 A. L.	their se. Instruments sustained sentific	OLIVERAL PROPERTY.	A.W. COM. LL	TE 0101 AM	Tribes, MA	W.		Willers & Com-	1/47		
						SUS	SUS.	. S. S.	Ses.	SUS.	SUS.	Sus.	SUS.
					-SUS	SBI	ZYF	PALL	PALL	PALL	ZALL	ZVIT	FALL
			TEOTER-	DIS-	PENDED		DIAM	DIAM.	DIAM	DIAN.	DIAM.	DIAM.	DIAM.
			ATURE	CHARGE	SDDT-	DIS-	1 P 1 N 2 1	FINTE	7 PINER	P. P. P. C.	PINIS	2 PINER	Z FINER
TAG.	_	:- -	٠	Š	(2)	(T/DAY)	Š	016 VB	7K. 5K.	125 10	250 10	9	8
		•	00010	09000	80154	80155	70338	70340	70342	70343	70344	70345	70346
				,						;	;	į	
Jun 07,			6	42700	169	19500	#	8	87	26	86	100	ı
			11.0	¥ 20 20	%	34100	ដ	94	٤	2	8	:	I
			0.11	47100	485	61700	*	8	2	2	8	8	ł
			12.0	26300	225	34200	12	9	9/	28	\$	81	1
			13.0	34500	141	13200	71	A	79	92	100	i	;
			7.0	60109	824	134000	13	ř	2	2	F	100	1
Jun 02,	1971	1200	8.5	53100	173	24800	1	1	11	85	66	100	1
TARE 2	1. INS	TANTANEO	table 21. Instantandous suspended	SEDIMENT	AND PARTICE	E SIZE AM	AND PARTICLE SIZE AMALTERS, KOOTEMAI R. BELOW LIBBY DAN	EMAI R. BEEL	OV LIBBY DA	K M. LIBBY	MONT	1968 - 1971	
						-SDS	SUS.	SIE	\$18		. E		915
							E	•		į	ġ (į
						-IGS	į						250.
			TENEST-			į						LALL	
			ATURE	CHABCE						DIAN.	DIAM.	DIAK.	DIA.
DATE		717.00	Ų	y C				A 110	A P LIMER	7 7 7 7	1	X 7	Y Prince
			01000	09000	80154	80155	70336	70340	70342	70343	70364	5 % O.C.	1.05 2.05 2.05 2.05
, i	9067		0.01	37100	đ,	10400	21	33	8	89	8	100	ł
, i		777	2.	23100	14	23200	*	\$	79	2	97	\$	01
Me 14		2	? :	2015	î	00066	07	42	2	4	901	1	1
, , , , , , , , , , , , , , , , , , ,		1	1 5		976		2:	ŝ:	7.2	9	\$	8	1
8		9		2000	2 8		3 :	9	=	2	8	8	ı
: :			3.	200	ř	33300	# :	2	2	9	6	9	ı
i s î l					9	107000	2	•	8	\$	8	8	ŧ
		}	2	3	6	2000	£	9	2	Z	8	901	ı
PA 20 T 25		PANTANEO	TABLE 22 TARFARTAMENTS STORMED STORMET AND PARTICLE SIZE AMALYSES, MONTEMAI R. M	SEDUCER	AND PARTICL	E SIZE ANA	LYSES, ROOTI	DAIR. M.	COPELAID,	1967 -	- 1971		
	•					i	i		į	26	Š	S	5
							į	į			9	9	9
					į		į	Ž	TVI.	YALL	PALL	PALL	PALL
				***			777	DIAK.	DIAM	DIAM.	DIAK.	DIAM.	DIAM.
						1	7	Z PINGE	A PINER	Z PINEZ	A PUMER	A PURE	A PUMB
				Š	(7/50	(T/DAT)	100	. 016 YE	.062 794	.125 186	.250 IE	. 500 H	7. 2.
		!	0000	9000	¥ 108	80155	70338	70340	70342	70343	70344	70345	70346
\$			9	2	100	26.500	11	17	3	83	76	100	ł
Ř:			9.9.		3	240	i =	3	28	6	81	1	ŀ
j.		3 :		2000	} ₹	110000	12	3	7.	T.	2	700	1
į		3 9	16.0	2 S	173	28800	; 3	5	8	z	100	1	ł
				1	ì								

Por	1
Turbidity Determinations	1.4kk
Table 24.	
- Mar 72	
Oct 67	
Time-Weighed Means,	
it Concentrations,	
1 Sedimen	
Suspended	
Table 23	

Table	23 Sueper		, Time-Weighed	- Mar 7	Table 24.	Turb	dity	eterni	nation Libby	P Por	Turbidity Determinations For The Kootenai River Below Libby Dam, 1968	tena	River	Below		
	14	Rexford (Sts. 1)	Below Dam (Sta. 3)	Copeland (Sta. 9)			_	1	(SECOND) CAPELL CAPELLA SECTION CAPELLA CONTRACTOR	1	1	75000				
1967	Set 1	12	31	1/2			•		1111	1010	91118					
i	¥0	7	12	e	DATE	JAN	FEB 1	HAR 1	APR M	HAY J	אטונ	JOL AL	AUG S	SEP O	OCT NOV	W DEC
	2	19	18	so :	•									,		
1968	Jan	o (27	m I	н с			.	_					m r		
	<u>.</u>	12	20	, -	4 m			٠, ٠	_					n ~		
	į		77 °	1 6	4			, 10) m		
	į	121	. 31	` ec	· •^			•						· en		
		179	257	153	•			^						· m		
	įĘ	; 5	; 5	} '	_			· #						, M		
	M	21	11	•	· 60			12	, m	91	15	37	81	· m	. 69	. 6
	Š		; s c	•	6			11						m		
	į	•	, ~) e1	10			S						4		
	À	. ~	. ~	4	11			s						4		
	ğ		12	4	12			2						4		
1969	in the	•	¦ •	· 60	13			4						٣		
	45	10	•	4	14			4						4		
	Her	12	,	€	15			4						m		
	Apr	"	132	104	16			4						4		
	į	3 02	267	196	17			4						4		
	J.	165	286	165	18			so .						.		
	Jar	07	S	43	19			<u>.</u>						3 ·		
	Aug	00 1	ដ	ដ'	8 3			'n						4 -		
	Ģ.	_	30 1	xo (1 8			n (
	Ģ	•	so ·	м.	2 5			m ,						Λ <		
	No.	vn ·	۰ م	4.	2 2			4 •						* *		
	<u>.</u>	٥ (•	.	7 7			• •						* <		
19/0		T	D 6	, ,	2, %			٠ -						1 4		
		۰ م	n ex	~ &	22									4		
	į	. 10) ~	• •••	8 8			'n						**		
	May .	***	980	76	82			5						4.4		
	i i	<u>.</u> 92	3 8	89	30			S						*		
	7	11	#	6	31			S		38			~		4	
	Aug	•	10	•												
	Sep.	Φ.	90	~												
	, 6	vn a	••	* "	N.			ď	4	42	1 429	8	1	*	,	~
	į		. =	, «1				,	•			?			,	•
1471	1	, 2	3	ı M												
:	2	ា	श	17												
	Mar	6	vo	'n												
	Apr	25	22	33	;	•										
	ě	243	239	242	*Estimated	red										
	3 3	180	143	702												
	7	: ;	9:	₹ °												
	1.	1 •	3 2	N ⊸												
	ä) (!~	· •												
	À	1	. ~	•												
	Sec.	•	60	~												
1972	e i	ı	m	7												
	2	•	en	•• ;												
	Mer	•	20	8												

Table 26. Turbidity Determinations For The Kootenai River Below Libby Dem, 1970	Formanin Turbidity Units (00076)	DATE JAM PED MAR APR MAY JUN JUL AUG SEP OCT NOV DINC	2 2 2 2 13 53 7 7 4 4 2	1 2 2 3 11 57 5 5 4 3 3	1 1 2 3 17 63 4 5 4 6 2	1 1 1 5 26 57 6 5 6 3 3 3	1		1 1 5 31 80 6 5 3 6 3	8 4 1 4 2 28 80 3 3 3 4 3 6	3 1 4 3 27 54 4 4 3 3 2	4 1 2* 2 27 51 3 4 2 3 3	2 2 5 3 13 47 4 4 2 3 2	2 2 2 2 15 28 5 5 2 3 2	2 2 2 3 17 25 4 5 2 4 2	2 2 2 2 15 27 3 4 3 4 2	1 2 2 1 59 26 3 5 2 4 2	1 2 2* 2 64 68 3 3 3 4 2	1 2 2 2 62 73 4 4 3 4 3	1 2 2 3 66 76 3 4 4 4 3	1 2 2 3 38 68 3 5 5 4 3	1 3 2 3 39 27 3 4 4 3 3	2 3 2 3 35 23 3 3 4 3	1 3 2* 4 39 22 3 3 3 4 2	1 3 7 4 44 23 3 2 3 3 2	5 3 2 2 41 20 4 3 2 3 2	2 4 2 3 43 17 4 4 3 3 3	1 2 2 2 52 19 4 5 3 3 4	2 2 3 2 63 19 7 4 4 3 4	1 2 34 3 63 16 4 6 6 3 2	1 3 1 27 16 4 4 4 3 2	1 2 3 24 17 4 3 3 3 2	1 2 25 5 3		7 6 6 7 7 77 36 6 6 6 6
River Below		G SEP OCT								7																									7
The Kootenai River 1969	Units (00076)	JUL AUG	8	36	33	35	2	3 5	37	36	23	23	22	22	22	18	19	18	13	16	74	21	•	٠,	'n	'n	4	4	4	S	'n	4	4		ç
	_	MAY JUN	31 54							32 110																								\$	19 (9
Turbidity Determinations For	Formasin Turbidity	HAR APR	7	18	23	61	=	21	33	3	33	32	36	33	33	33	33										_			20 39				3	80
4	٤	7																	_	_	••	_		_	_	_		-	٠.		•	_			

1971
į
L1bby Dam. 1971

Table 27.	Turbi	dity 1	Turbidity Determi	inatio Libb	Libby Dam, 1971	The 1971	Kooten	ıl Rive	nations For The Kootenai River Below Libby Dam, 1971				Table 28.		rbidit	y Dete	Turbidity Determinations For The Kootenal River Below Libby Dam, 1972
			Potenz:		bidity	Unit	in Turbidity Units (00076)	(9,								Form	Formazin Turbidity Units (00076)
DATE	JAN	123	MAR	APR	MAY	NEC	Tar	AUG	SEP	OCT	MOV	DEC	DATE	JAN	FEB	HAR	
п	7	75	٠	~	25	83	78	00	4	5	m	4	7	8	-	17	
7	7	22	9		20	77	53	1	'n	'n	4	~ ~	7	~	7	11	
٣	7	#	4		368	29	27	m	•	4	4	٣	٣	7*	7	Ξ	
4	7	7	٣		20 *	62	ຊ	4	80	m	2	80	4	7	7	60	
s	٣	œ	٣		4 49	8	23	4	S	٣	4	٣	S	*		∞	
•	4	6	6		10	86	77	٣	7	٣	'n	7	•	7*		6	
7	~	٣	4		72#	105	54	m	m	7	m	٣	7	5*		2	
∞	٣	4	٣		69	103	22	m	5	٣	٣	5	0 0	7		•	
0	٣	9	m		29	901	54	٣	7	4	4	œ	6	~		6	
01	m	4	~		Z	97	77	5	7	٣	٣	4	91	Ř		6	
=	m	2	4		8	98	7	4	9	٣	7	4	7	# M		ដ	
12	e	9	4		Z	8	78	٣	4	٣	7	٣	12	5*		20	
ដ	7	ឧ	4		98	ያ	27	7	4	~	4	4	1	* 2		15	
7 1	m	9	e		140	64	54	m	9	٣	e	7	14	5 *		18	
15	S	17	m		135	55	18	4	s	7	*7	*	15	7		7	
16	~	81	7		8	25	13	m	4	٣	4	7	16	7		2	
17	m '	77	m		23	4	91	~	m	е	٣	6	7	~		20	
18	'n	74	m		45	0	77	4	٠	m	4	m	81	7		52	
19	S	ដ	е		32	37	17	m	4	٣	<u>«</u>	7	19	7	6	22	
8	S	#	٣		27	35	18	m	e	٣	Ŋ	ش	20	-	'n	27	
1	*	9	m		ឧ	35	19	7	e	٣	٣	m ·	77	en :	٣	53	
22	m,	_	m		77	37	22	4	'n	4	4	m	52	7	m	20	
ន	m -	۰ م	m (Ç,	27	9 9	22	4	9	m ·	m ·	7	ន	m (7	E	
5	.	٠,	٦.		S :	3	77	· ·	Ω.	4	S	7	5 7	7	m	2	
S	4 (20 (4		14	2	77	4	·	m	4	7	25	7	m	8	
5 0		_	4		6	3	8	m	4	m	4	7	76	m	m	22	
27	· ·	•	4		*	72	18	~	m	m	e	7	27	~	~	22	
8 2	4	4	4		8	47	15	m	m	4	٣	~	28	m	4	ຊ	
\$	9		٣		160	2	15	٣	4	\$	٣	-	53	~	17	77	
8	۲.		٠.		125	37	14	S	4	4	٣	en .	30	m		27	
31	4		٠		86		7	1		4		m	31	m		53	
Mean	\$	01	4	12	*99	\$	21	4	5	e	\$	*	Mean	5*	٣	20	

*Estimated

Table 30. Miscellansous Turbidity Determinations for the Kootenai River at Warland, 1968. Table 29. Miscallaneous Turbidity Determinations for the Ecotenal River Mear Rezford, 1968

ğ	40 4	44	•				
Nov 3							
6) 4 6)	•	7	8				m
(0007 Sep	m					Ś	
Unite Aug 5	12						
Formarin Turbidity Units (00076) May Jun Jul Aug Sep Oc 17 25 5 26 3	88	54	12	13	13	ដ	٠
in Tur Jun	57	89		92		23	13
Formaz Hay 17 26		25	4.7		*	8	£ 3
Apr 9	•		m				
Mar					•		
Feb							
de de							
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e v e e 0;	122:	ដ្ឋាងដ	922	ដឧន	នេះ	2888
o A							
N						4	
76) Oct		~					
(000) Sep	•					•	
Units	ın						
Formsein Turbidity Units (00076) May Jun Jul Aug Sep Oct							
an Tar			;				
Former!		•	•				
Apr H	e						
¥ Y							
2							
a.							
*							

Table 32. Miscellaneous Turbidity Determinations for the Kootenai River at Libby, 1968. Table 11. Miscellansous Turbidity Determinations for the Kootenai River Below Libby Dam, 1968.

	ğ							•	•	7	16#	175		764	•					악											
	Mov																														
	0ct		æ	•													9												∞		
	076) Sep			m							•	•																			
	te (00 Aug		9	,						16	2						9									S					
	ty Uni	36	}						35	}			25			17				13		•	ı			•			'n		
	Formazin Turbidity Units (00076) Apr May Jun Jul Aug Sep							89			6.3	!							52					31				42			
	F Car	28		37						77				22			47				45	!		97			z				43
1	Por Apr	91				90			9			9							9							4				12	
	¥er.						13												m												
	7																														
	Jen																														
	Date	-	7	٣	4	'n	•	7	Φ	0	9	7	12	13	14	15	9 :	7	2 :	2 2	17	22	23	54	52	5 6	27	78	53	8	33
	Dec							4		* 7	23*	225*	25*	50♣			æ		4 1	^											
	Nov																														
	9ct																														
3	() de			٣							7																				
•	te (30		5						74								m														
	urbidity Units (O Jun Jul Aug	23							ጵ				23			77			:	77		77			,	۰		,	•		
	Turbidity Units (00076) Jun Jul Aug Sep							25			48							;	52					58			:	4 3			
,	Apr May									#				2			4				49			ž		;	*			:	ş
	4				=				'n			77							m r	•					•	4			•	•	
	Kar						•					m							•			'n		,	•						
	3																														
	de L																														
	Date	7	~	φ.	•	'n	، م	_	•	Φ.	2	=	7	2:	=	2:	9 :	3 :	9 5	2 2	71	77	23	4 2	2 2	2 :	7 5	9 9	\$ 5	2 :	7

Table 34. Turbidity Determination for the Kooteani River Dering Deniangs of Contractor's Settling Pond, 25 - 26 Hovenher 1969. Table 13. Turbidity Determinations for the Rootensi River During Second-stage Bivertion, 7-19 December 1968.

(90076) Libby (8ta 7)		36	}		;	2		#		•	;	£	*			2	11					:	*									
Ormasin Turbidity Units harland Bolow Den Sta 2) (Sta 3)	~;	•	19		2		77		;	2	#	l		11				~	~	~	,	~										
Formasin To Warland (Ste 2)				~		~	•		~						•					,	~											
į	1555	322	1810	1915	2000	2030	2200	2230	231.5	2 2 3 3 3 3 3	0130	0202	0310	0335	943 5	0545	5635	8	1100	1300	1430	250	1540									
Dete	Mov 25									70	87 10																					
	σ	• ~	•	•	•	10 4	• •	16	11	ន	2 2	: X	*	45	*	£ 3	a	125	7		55	*	22	22	2	ង៖	2 5	.	9 5	ł		91
(00076) Libby (Sta Time	0645	1700	07.70	1335	;	2001	2000	2205	9000	950	3 4	200	1000	1200	1430	1625	1800	2015	2215		9003	0530	212	6 30	8	1205	800	3 8	1200	}		0925
usin Turbidity Bates (Below Dam (Sta. 3) Time Pro	•	m 🕳	•	•	∢•	•	• ••	23	*	3:	2 5	2 %	22	130		62	3	7	7	2		21	2	21	2	*	2 2	3 •	o w	•	,	• ••
Peta Turbi Pelov Des Tine	9945	1630	0000	1305	1400		265	2240	9035	9 2 3 3	8 5 5 5	0745	1025	1230		1555	1830	2045	2145	2345		0315	8 45	0705	8	1230	8 6	3 8	1230	2000	;	600
(Sts. 2)	•	•)	•																						•	^		•	•		
Mariand (S	1015	1515		1205																							25		1030	828		
P t	2	•	9						#											;	2						•	3		3	11	32

TABLE 35.1				6604	UNITED OGICAL	STATES	DEPARTME - WATER	UNITED STATES DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY - MATER RESOURCES DIVI'S	DEPARTMENT OF INTERIOR - WATER RESOURCES DIVISION	Z			
12301933	- Kootenai	12301933 - Kootenai River Below Libby Dam, Mear Libby, MT	Libby Dan	s, Near Li	ibby, K	L				WATER Y	WATER YEAR ENDING SEPT. 30, 1968	S SEPT. 3	9961 40
CONDUCTI	CONDUCTIVITY (MICROMHOS AT	ROMHOS AT	25 DEG.	C) . RA!	MOON	• RANDOM (EMSTANTANEOUS)	ANF OUS)						
DAY	100	AON	DEC	JAN		FEB	MAR	APR	MAY	NOT	J0F	AUG	SEP
	į	410	446	471		485	844	428	331	216	161	237	338
~	1	466	436	477		480	457	405	327	203	199	243	338
m	399	389	456	483		481	454	404	278	202	197	245	338
4	396	297	458	492		482	457	437	278	202	197	245	338
**	402	596	437	486		482	74	435	277	214	86 ?	251	348
•	368	290	452	485		482	431	437	272	203	199	258	348
~	372	293	436	486		419	419	416	275	297	195	260	349
•	391	301	437	477		477	422	368	273	213	199	256	350
ø	391	305	141	**		463	454	448	297	212	1%	258	349
2	397	305	423	469		460	445	‡	300	503	210	563	348
11	398	409	445	483		463	044	445	300	205	210	245	342
75	405	404	440	485		482	440	416	962	203	503	245	345
13	ž C	396	447	486		485	434	415	558	202	509	289	348
:	365	91¢	487	488		484	435	418	231	203	210	289	348
21	389	415	497	459		487	**	4 01	235	200	222	289	348
91	375	11	486	463		504	446	401	228	225	549	289	348
11	368	416	490	461		505	445	431	822	522	543	289	356
97	377	404	210	486		479	435	435	218	8	248	289	287
5	378	+1+	115	485		479	459	430	223	506	247	323	284
2	372	415	808	464		4.38	430	459	522	201	249	323	284
77	372	399	507	\$		483	439	459	215	207	248	323	284
25	361	401	505	7		475	449	430	210	207	231	323	284
23	382	4	523	483		458	439	458	202	207	231	328	284
:	40 4 60 4	4 4 6 4	525 485	486		194	4 38	1	802 2.13	\$ 50 20 20 20 20 20 20 20 20 20 20 20 20 20	230	325	787 304
;		2	2			} ;		?		}		}	
97	920	6	**	477		161	428	458	216	204	230	332	277
12	320	432	474	445		440	413	426	552	204	232	332	279
2	6 4 6 6 7 6	445	404	473		450	414	415	216	212	244	332	27.2
Ç	5 6	75		417		764		• T •	100	707	243	9 6	277
* =	966	1	104	\$			412	<u> </u>	213	3	241	0 m	
		į	į			į	į	•	;	į	: :	· ;	;
	382	986	471	413		475	434	451	247	208	222	162	316
YEAR	196												

UNITED STATES DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY - MATER RESOURCES DIVISION

12301933 - Kootenal Miwar Balow Libby Dem. Hear Libby, HI

TABLE 35.2

NATER YEAR ENDING SEPT. 30, 1969

COMBUCTIVITY (MICROHMOS AT 25 DEG. C)	Y (MICROM	MOS AT 2	5 DEG. C)		, RANDOM (INSTANTANEOUS)	AMEDUS)						
DAV	100	2	DEC	LAN	FEB	HAR	APR	PA Y	108	JUL	AUG	35
-	270	172	306	!	į	ļ	301	228	204	215	192	į
~	270	269	303	į	:	:	303	227	204	227	261	2
•	277	172	303	!	1	ł	289	232	204	227	264	2
•	269	269	303	!	ļ	;	289	238	192	248	269	8
•	592	592	306	ł	i	!	583	242	161	510	592	311
•	270	276	306	!	i	ł	273	240		225	249	11
~	269	274	806	į	!	!	250	227	2	217	269	Ş
•	271	269	312	ļ	į	1	255	227	179	224	274	9
•	271	283	309	1	i	;	255	225	188	233	279	ğ
2	270	283	306	!	i	:	257	210	192	231	279	30
11	270	271	306	!	ł	ł	253	203	9	231	284	40
21	270	286	303	;	;	!	248	207	3	229	282	310
13	22	274	306	į	ł	•	244	184	204	227	282	313
2	220	271	306	į	i	:	248	184	200	523	282	315
23	270	172	906	ŀ	ļ	ł	248	203	205	231	282	317
10	270	278	303	1	į	ł	244	203	215	213	282	414
11	270	286	306	į	į	323	240	204	214	246	282	
2	270	286	306	ļ	i	320	236	206	215	240	284	307
2	280	291	318	ł	į	317	248	207	203	250	284	300
2	283	162	315	I	ł	319	238	902	204	552	284	306
21	280	162	309	ļ	ł	317	236	204	194	255	282	308
22	280	162	315	ļ	!	317	236	204	161	267	282	311
23	283	291	312	;	!	322	226	961	186	252	284	311
*2	280	162	312	!	ł	326	204	061	188	255	287	307
X	2 80	291	322	ł	ł	329	216	179	8 1	250	230	301
92	281	286	339	į	i	330	213	174	186	252	290	298
22	280	291	339	:	į	330	221	179	100	252	284	298
58	280	288	339	ļ	:	314	224	179	189	246	282	298
2	277	291	į	ļ	;	310	221	182	189	252	284	2
8	277	5	į	!	!	310	226	192	88 1	250	284	298
31	273	i	1	ł	1	2 9 9	i	184	1	292	290	İ
MONTH	274	182	312	ł	1	}	248	202	195	239	279	306
YEAR	263											

MOTE: NUMBER OF MISSING DAYS OF RECORD EXCEEDED 20% OF YEAR

A CONTRACTOR OF THE PARTY OF TH

\$0400	8	HG/L																															3.4	3.8	20.0		1.5	2.4	3.7	2.7	7.7	20.3	1.9	7.7	 		1.2
60400	H	ns	7.70	8.8	7.70	7.70	3	7.90	7.70	9:	3.5	7.70	7.70	7.50	3.5	3 8	8.2	7.70	8.00	7.70	7.60	9.5	2.0	7.90	7.20	9.6	8.5	8 9	7.70	7.40	æ .	9.5	7.80	7.80	9:	3.5	20.50	8.00	2.2	8.8	8.5	8	01.0	8.10	9.50	8.	8.30
01,00	00.	HC/L																																													
50800	2	PERCENT																						102	%	3 . 7	£ 8	2 2 2	8	101	3	195	200	8	£ .	s á	8	105	106	50.5	<u> </u>	8	3	9	86	3	26
.;	28	NC/L		10.0								0.6			;	9.5	?						11.2	11.6	12.8	12.6	12.8	11.4	10.3	ø.	4.0	0 d	11.6	11.9	12.5	11.0	12.5	12.0	12.0	7 :	•	10.0	11.6	12.0		? •	12.0
REXTORD, HONT	CHOUCTVY	II 43 C	210	35,	421	30g		694	489	216	747	325	281	285	313	3 3	į	323	248	218	227	268	6	325	%	117	À E	35.	233		224	766 266	34.5	335	į	2 6	370	35	245	195	35	28	a	9	8,9	375	33
RIVER MEAR			5	e	m .	. ~	•	m	6	77 '	7 6	, -	•	~ .	m ,	→ -	۰ ۸	٠.	•	'n	4	m u	n e	· ~	~:	~ (, ,	•	* *	IJ	•	۰,۰	۰ ۵	6	.	• c	•	5	10	ខ្ល	n =	9	; ~	1	~ *	, m	
KOOTENAI	TURE S																			93.0	32.0	o	2.0	1.0	0.1	o .	9.0	9.0	43.0	30.0	0.0	9.0	2.0	2.0	0.1	9.0	9.0	0.4	20.0	o. c	9.0	0.4	0.4	3.0	9.0	2.0	6.21 0.21
9000	STREAM	G S	56200	0899	4540	28 50 20 50	2200	3540	3410	35800	15900	9220	7320	5580	4090	3300	2620	4 500	17900	26300	30700	11400	5230	4030	2930	0061	2360	268	16000	31800	17200	744/ 010 4	0004	3310	980	3760	2700	4450	25800	63900	13600	7550	5280	9797	256	2500	2100
9	WATE	CENT	12.2	15.0			0.0	0.9	10.0	10.0	12.0	14.0	9.0	4.0	2.0	9,0	9 9	0.9	0.8	12.0	14.0	0.51	•	0.9	0.0	0.0) r	9	6.5	13.0	16.5	76.0	5.5	4.0	0.0	, v	20.5	0.9	7.0	.	2.7.5	2.1	0.7	1.5	9.0	.0.	3.0
	100	a va	18 00			8 8																																									
TABLE 36.1	PATE	2	67/06/29	90/60/19	11/01/19	67/11/03	67/10/69	68/03/19	68/04/22	68/05/22	68/06/1/	68/00/29	68/10/04	90/11/89	68/12/02	69/01/06	90/20/69	10/40/69	69/05/02	60/90/69	60/10/69	69/06/05 07/06/05	69/10/16	69/11/05	69/12/01	70/01/05	70/07/07	70/05/05	70/05/08	70/06/03	70/07/07	70/06/03	70/10/22	70/11/13	70/12/08	71/07/18	71/03/17	71/04/14	71/05/20	27/06/09	2/0/1/	70/60/17	17/10/14	11/11/11	277774 277974	72/02/07	72/03/14

, 100ff.		CA CO3 CA CO3 NG/L NG/L	77 77	321	220	•		243 120		106 25	117 22	110	96 961	142 28	145 23	170	167 37	172 41	174 45	103	:n	131 16	151 21	152 26	175	194	177 40	182 45	1/2		07 07 01 06	108 108 13	116 97 10 108 13 132 23	118 97 108 132 142 160	118 108 1132 142 160 160 170		108 108 160 160 180 180 180 180 180 180 180 180 180										108 108 117 117 118 119 110 110 110 110 110 110 110 110 110
KOOTEMAI RIVER HEAR REIFORD, MOST	00445 C03 ION	CO3	•	> 0	5 C	.	. 0	•	•	0	•	0 (-	• •	•	0	0	0 (-	•	. 0	0	0	0 0	• •	. 0	0	0 (0	, <		,000	00000		00000												
KOOTEMAI RIV	00440 BC03 108	MC/1	109	3:	33	1	165	31	152	8	911	1	75	2	149	791	158	91	3	3 2	ă	9 1	158	153 254	<u> </u>	193	167	991	Ter	116	911 91 91	919	116 105 116 116 116 116	116 105 117 134 135 135	31 51 51 51 51 51 51 51 51 51 51 51 51 51	11 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	99999999999999999999999999999999999999	99999999999999999999999999999999999999	######################################	2 E 2 E 2 E 2 E 2 E 2 E E E E E E E E E	64 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	######################################	######################################	######################################	*	22222222222222222222222222222222222222	78 F F F F F F F F F F F F F F F F F F F
	00410 T ALK	CACO3 HE/L	28	2 ;		9 =	135	123	223	8	8	8	3 3	11	122	¥.1	130	ន	8		102	a	130	92.	130	3	137	137	5 ;		8 8	888	2	88883 H	88888 1115 15	8 8 8 8 8 3 3 3 5 5 5	2		* 2222233255553233	8 8 8 8 11 12 12 12 18 8 8 8 8 8 8 8 8 8 8 8 8	8 3 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2	8 8 8 8 2 2 2 2 2 2 2 2 2 2 8 8 8 8 8 8	8 8 8 8 9 11 12 12 12 12 12 18 8 8 8 9 15 15 15 15 15 15 15 15 15 15 15 15 15	8 % % % % % % % % % % % % % % % % % % %	8 % % % % % % % % % % % % % % % % % % %	8 8 8 8 8 11 12 12 12 12 13 18 8 18 18 18 18 18 18 18 18 18 18 18 18 18	8 8 8 8 9 9 1 1 12 12 12 12 12 18 18 18 18 18 18 18 18 18 18 18 18 18
	70301 DISS SOL	MC/L	'n	:		ŝ	98	295	SOR	126	137	128	8 5	163	173	198	136	6 1	202		621	757	174	71	205	229	212	2	S F	161	=	77	3335	1335	H2335	1335 S	157 177 177 177 177 177 177 177 177 177	124 124 134 134 130 140	1174 124 1345 1340 1340 140	1177 177 178 179 179 179 179	117 178 179 170 170 170 170 170 170 170 170 170 170	117 17 17 17 17 17 17 17 17 17 17 17 17	1124 124 125 140 150 150 150	177 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1777 6 7 777 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1777
MIA	70300 RESTDUR	D158-180 C MG/L	521		213		Ã	8	336	221	122	\$	95	178	191	217	212	213	202	22	ផ	SSI	183	193	\$ £	252	223	72	817	3 :	877	32	31 S	32388	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2		16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					2
36.2 CHRICAL BATA		8 3	8	R 8	88	3 8	2 2 2	31	17 15	1, 8	12 00	25		-	_		_		-		88	_	21		-	_	2			-		_		. •	. •	. •	. •	. •	. •	. •	. •	. •	. •		28888888888888888888888888888888888888		
TABLE 36.2	PATE	E e	67/06/29	67/01/27	100/00/10	20/11/29	61/77/19	64/03/19	64/04/22	64/05/22	64/06/17	68/07/24		66/11/69	64/12/02	90/10/69	69/02/07	69/03/06	10/0/69	70/07/07	60/10/69	49/00/69	70/60/69	69/10/16	69/12/61	70/01/05	70/02/02	70/03/05	B/50/02	20/06/02		70/01/07	70/01/07 70/08/05 70/09/03	70/07/07 70/0 4 /05 70/09/02 70/10/22	70/07/07 70/08/05 70/10/22 70/11/13	70/07/07 70/08/05 70/10/22 70/11/13 70/11/19	70/01/07 70/08/05 70/09/02 70/13/13 71/01/18	70/07/07 70/09/02 70/19/22 70/11/13 70/12/06 71/01/18	70/07/07 70/09/02 70/19/22 70/11/13 70/12/06 71/09/17 71/09/17	70/07/07 70/09/05 70/19/22 70/11/13 70/11/18 71/01/18 71/03/17 71/03/14	70/07/07 70/09/02 70/19/12 70/11/13 70/11/18 71/03/17 71/03/17 71/03/17 71/03/17 71/03/17	70/97/07 70/98/02 70/19/13 70/11/13 70/11/13 71/92/18 71/92/18 71/92/19 71/92/19 71/92/19 71/92/19	70/07/07 70/09/02 70/10/22 70/11/13 70/12/08 71/02/18 71/02/18 71/02/19 71/06/19 71/06/19	70/07/07 70/09/02 70/10/12 70/12/13 70/12/13 71/02/13 71/05/13 71/05/13 71/05/13 71/05/13 71/05/13 71/05/13	70/07/07 70/09/02 70/19/22 70/12/13 70/12/03 71/09/13 71/09/13 71/09/03 71/09/03 71/10/13	70/07/07 70/09/02 70/19/12 70/11/13 70/11/13 71/09/13 71/09/13 71/09/13 71/10/14 71/12/16	70/07/07 70/09/02 70/19/12 70/11/13 70/11/13 71/09/13 71/09/13 71/09/13 71/19/14 71/19/14 71/19/14

00680 T OMG C C MG/L		0.44.0.000.000.000.000.000.000.000.000.
00671 PHOS-DIS ORTHO MG/L P	0.570 0.920	0.200 0.100 0.100 0.160 0.030 0.030 0.010 0.010 0.150 0.150
00666 PHOS-DIS MG/L P	0.630 0.940 0.940 0.580 0.710 0.450 0.380 0.380 0.380 0.370 0.030 0.030 0.030 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.100 0.000	
00665 PHOS-TOT MG/L P	0.150 0.150 0.150 0.150 0.150 0.100 0.100 0.120 0.120	0.280 0.260 0.250 0.150 0.300 0.050 0.050 0.180 0.220 0.190
006 30 N024 3W3 N-TOTAL MG/L		0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
00618 N03-N DISS MG/L	0000 0000 0000 0000 0000 0000 0000 0000 0000	0.28 0.10 0.10 0.10 0.10 0.10 0.10 0.22 0.22
00613 N02-N DISS NG/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
00610 NH3-N TOTAL MG/L	0.000 0.280 0.280 0.280 0.040 0.040 0.100 0.040 0.040 0.040 0.040	0.110 0.190 0.190 0.260 0.260 0.070 0.010 0.090 0.090 0.090
00605 ONG N N NG/L	0.220 0.380 0.040 0.040 0.090 0.120 0.120 0.120 0.100 0.000	0.180 0.000 0.160 0.160 0.160 0.160 0.170 0.130 0.170 0.170
00600 TOTAL H H HG/L	9.67 9.38 9.13 9.13 9.13 9.13 9.13 9.13 9.13	0.000000000000000000000000000000000000
TO TA	242727724282822222222222222222222222222	
TAM TOTAL	61/10/11 64/11/19 64/01/19 64/01/19 64/01/19 64/01/19 64/01/10 64/11/06 64/11/06 69/02/01 69/02/01 69/11/05 69/	70/12/08 71/02/18 71/02/18 71/02/19 71/02/19 71/02/10 71/02/10 71/12/16 71/12/16 72/02/07

TARE 36.4	CHIEFICAL DATA	-		1003	EMAI RIVER	KOOTEMAI RIVER HEAR REXPORD, MONT	, NORT.		
7	7.1102	00915 CALCTIBE	00925 MCM8 1136	00930	00935	00940 CHI OR TOR	00945 SULFATE	00950 FLIGREDS	00955 STLICA
2 2	E &	CA, DISS	MC/L	MA, DISS MC/L	K,DISS MC/L	년 1	SO4-TOT MG/L	F,DISS	DISOLVED MG/L
67/06/29	1 8 00	°.	4.9	1.10	0.60	4.0	91	0.30	9.
67/07/27	9 11	37.0	9.8	1.80	0.40	7	ສ	0.50	5.0
90/60/19	27	52.0	11.0	2.80	8:1	-	Z :	1.30	6.1
67/11/07	88	67.0 •	13.0	9.10	88	7 6	3 5	9 5	0 v
67/12/19	22	85.0	25.0	3:	1.20	1 74	138	2,10	
68/03/19	ध ध	76.0	13.0	4.40	0.80	~	115	3.40	9.9
68/04/22	21 CE	76.0	14.0	3.40	8:1	7	125	2.30	6.3
66/05/22	8 8	32.0	4.6	9.1	9.0	٦,	8 2	9.60	7.4
68/09/1/	31 41	9 9 4 7		1.40	8 9	- 6	5 C	3 5	
68/08/29	8 12 1	47.0	6.6	2.20	0.40	• ~	2 5	8	. 0
10/01/89	16 15	41.0	10.0	2.40	0.40	7	37	1.10	6.0
90/11/89	ม 8	39.0	11.0	2.60	1.00	7	35	0.90	4.6
68/12/02	8 9 9	0.0 8.3	12.0	3.20	0.0	7	8 :	8.0	. o
69/01/06 69/02/03	3 5	9 4	2.5	3.5	8.6	m «		8.8	7.7
69/03/06	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.94	2.0	3 8	8 8	n 64	3 2	20.20	10.9
10/40/69	21 21	48.0	13.0	4.20	1.10		3	1.10	9.9
69/05/02	11 45	۵. ۲.	9.5	2.10	0.60	-	23	0.30	5.8
60/90/69	13 00	31.0	6.3	1.10	8.0	~	77	8.	4.1
60/10/69	8 8 3 3	H.0	9.9	9:0	0.20	7	200	8.9	A.
70/60/69	2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	. o.	13.0	8.7 •	0.10	N F	8 2	200	. ·
91/01/69	8	41.0	12.0	3.70	1.90	•	* *	9	
69/11/09	14 15	42.0	13.0	4.20	1.00	•	ጽ	9.0	7.2
69/12/01	8 S	47.0	14.0	9.40	1.40	.	£4.	0.80	6.7
70/01/05 70/02/02	3 5	0.10	7.0	9.5	8.8	.	9 .	0.70 30.70	0.6
70/02/02	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 9	15.0	8 9	3 -	^ ◀	9 9	2 8	
70/04/06	92	47.0	13.0	9.4	8.0	, eq	,	0.70	
70/05/06	12 30	32.0	8.5	2.50	8.1	7	77	0.50	4.0
70/06/03	22	27.0	7.1	2.00	9.60	7	16	0.30	3.3
/0//0/ 0//0/0/	8 2	2 4	9	2.10	8.9	7	61 :	0.50	4.1
70/09/02	3 H	2	11.0	9.5	3 5	,	2 8	3 8	
70/10/22	17 15	44.0	12.0	9.4	9.0	• •	3 3	2 0	9
70/11/13	8	42.0	12.0	4.30	0.80	'n	42	1.0	5.7
20/21/PL	8 8	0.0	13.0	8.9	8.0	∢ (3:	8.	7.4
71/02/18	88	3	13.0	7.70	9.0	n r	; 5	3 5	2.5
71/03/17	8 91	48.0	14.0	9	1.20) vo	3	9.1	9
71/04/14	8	44.0	13.0	4.00	0.0		2	1.20	5.9
71/05/20	8 27 52	3.0 2.0	9 6	8:	8.6	~	7	8.	6.1
71/07/15		9.0		3 8	9.5	٠,	77	0.20	•
71/08/10	1 R	29.0	9	2 S	9	1 6	12	2.5	•
71/09/07	8 8	35.0	10.0	3.10	0,70	. ~	7	9	
71/00/14	8	0.04	12.0	4.10	0.50	•	3	0.0	8.50
1/11/11	8 8 9 :	43.0	13.0	3	8.0	~ (ផ្ល	8:1	0.9
72/01/10	2 2 2	64.0	7. 7.	2.50	1.10	~ 1	7 5	8.5	6. G
72/02/07	1 R 2 P	0.04	14.0	3.5) 0	• •	; 5	7. T	9.6
72/03/14	8	4.0	17.0	6. 2	8.	, ~	*	22	1:1

MIN	
CHRICAL	
8.5	
1	

KOOTEMAI RIVER NEAR REXFORD, MONT.

01032 CHRONIUM HEX-VAL UG/L	000000000000000000000000000000000000000
01030 CHROMIUM CR, DISS UG/L	00000000
01027 CADMIUM CD, TOT UG/L	
01025 CADMIUM CD,DISS UG/L	00000000000000000000000000000000000000
01022 BORON B, TOT UG/L	
01020 BORON B,DISS UG/L	2 2 2 2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
01010 BERTLIUM BE, DISS	00000000000000000000000000000000000000
01005 BARIUM BA,DISS UG/L	
01002 Arsenic As, tot ug/l	
01000 ARSENIC AS, DISS UG/L	202222000000000000000000000000000000000
TDG OF DAY	848 8888888888888888888888888888888888
FIAG FICOT	69/06/29 61/07/27 61/07/27 61/10/11 61/11/01 61/11/01 68/04/12 68/04/13 68/04/01 68/11/02 68/04/01 68/11/02 68/11/02 68/11/02 68/11/02 68/11/02 68/11/02 68/11/03 68/

...

	01096 MANCHESE MM, D188 UG/L	88 88 88 88 88 88 88 88 88 88 88 88 88
	O1055 MANCHESE NOI UG/L	28.0 30.0 156.0
	01051 LEAD PB.TOT UC/L	ø 2 n
	01049 LEAD FB, DISS UG/L	00000499400008404
ND, HOUT.	01046 IRON FE,D158 UG/L	250 25 25 25 25 25 25 25 25 25 25 25 25 25
cootemai river hear receord, nont	01045 IROH FR,TOT UG/L	2
COOTEMAI RIV	01042 COFFER CU, TOT UG/L	999
_	01040 COFFEE CU,DISS UG/L	0-000
	COBALT CO,TUTAL UG/L	enterent y y
TABLE 36.6 CHRICAL DATA	01035 COMALT CO, DISS UG/L	0000m4400n00m4400n00m00m00m00m00m00m00m00m00m00m00m00m0
CHEETC	20 S M	######################################
36.6		
TABLE	STAN OT	67/07/27 67/07/27 67/07/27 68/09/08 68/09/27 68/09/27 68/09/27 68/10/06 68/

, HONTANA
RECEORE
KOOTEMA! RIVER MEAR
AI REV
KOOTEM
L DATA
CHESTICAL DATA
TABLE 36.7

71/07/15 10 30 71/09/15 10 30 71/09/07 06 00 71/10/14 12 00 71/11/11 10 00	228
	070
	v) → M
0000000	0.00
140 110 110 220 220 280	280 240 240
000000	2.0
20 10 8 °	2 2 2
< 10	
	. 0

TABLE 36.8 CHBUICAL DATA

KOOTEMAI RIVER NEAR REXFORD, MONT.

38260 HTAS HG/L	0.00	0.01	0.01	0.00		°.0	0.00	0.0 8	6.0 0.0	0.0 0	9.0	°.8	0.0	o. 8	8	9. 8.	0. 0.
31616 FEC COLI MPM-FCBR /100 ML																	
31503 TOT COLI MPDLENDO /100 ML																	
71900 MERCURY HG, TOTAL UG/L			0.0				< 0.5		< 0.5								
71890 MERCURY BC, DISS UG/L	0.0	0.00		0.0	0.1	0.1	0.3	0.0	0.3	0.0	0.0	0.1	0.5	0.2	0.5	0.3	0.3
31503 TOT COLI NEDLENDO /100 ML																	
31501 TOT COLI NETHENDO /100 ML																	
O1145 Selenium Se, diss UG/L																	
01130 Lithium Li,diss UG/L	00	0	0	O.T	•	13	16	0	22	0	2	2	0	•	0	0	2
01106 Aluminum Al, diss ug/l	8	3 6	202	9	901	8	8	8	900	700	200	901	0	•	901	•	0
TIME	22 23	88	2 1 1	12 00	00 00 01	8	12 00	20 20	00 01	10 30	8	8	20 00	22 30	20 20 20	0 07	8
and of	70/10/22	70/11/13	71/01/18	71/02/18	71/03/17	71/04/14	71/05/20	71/06/09	21/02/12	71/00/10	71/09/07	71/10/17	11/11/11	71/12/16	72/01/10	72/02/07	72/03/14

TABLE 37.1	CHEMICAL DATA			_	TEMAI RIVER	COTTEMA RIVER BELOW LIBBY DAM	УТТ				
2		00010	_	00070 E	00000	00095 CMD03CTVY	8 8 8	00 20 20 20 20 20 20 20 20 20 20 20 20 2	00310 20 0	00 4 00	00 4 03 005 005
2 2	1 5 8	1180	TLOW CTS	NS PE	STIME STIME	AT 25C MICROPHO	MG/L	SATUR	S DAY MG/L	ns	1/98
67/06/29	31 60	12.2			v	208				7.70	
67/07/26	8 8 8 8 8 8	16.1	18200 6930		m ~	32 g	11.0			7.50 7.50	
11/01/19	88	0.0	4790								
S/17/29	3 X 3 S); 	1950		•	511				7.60	
68/01/24		0.0	4100							;	
68/03/07			4330		•	448				7.80	
68/05/27		10.0	37200		01	230				7.60	
68/06/17	18 15	12.0	31000								
68/08/28		15.0	8300		-	339				7.80	
10/01/89		12.0	8260		•	900				7	
50/7T/89 99/00/07	4 ×	0	2900		-	S E				00.0	
69/03/04		0.0	2700		1 74	335	11.0			7.90	
69/04/03		7.0	7500		m i	297				7.70	
69/05/07		0.6	20900		~ ~	232				8.20 1.80	
69/09/09		12.0	33500		ግ ጦ	233				9.7	
5/8/6		18.0	11800		n 🛷	169				7.70	
69/09/02		16.0	6400		5	303				8.00	
57/01/69		0.0	5550	1.0	so o	8	11.6	86		8.20	
69/11/04 69/12/03		7.0	0	2.0	- 4	321	93.6	8 5		3.10 1.00	
70/01/12		0	2300	2.0	. v	373	12.6	101		9.00	
70/02/04		0.0	2700	1.0	m	340	12.8	98		7.40	
70/03/04		0.0	2400	1.0	7	372	13.4	66		8.00	
8/8/2		0.0	3080	2.0	ន:	362	11.4	104		8,7	
70/06/04		10.5	40700	2.0	18	190	2.6	5 8		7.40	
70/07/06		18.0	18100	3.0	19	224	4.8	8		8.00	
70/08/04		18.0	8650	2.0	81	262	4.6	108		8.10	
10/02/01		10.0	2340	. c	7 0	77		103		× •	•
20/11/02		3.5	34.70	2.0	1 70	322	12.3	: \$		7.60	5.6
70/12/07		0.0	2950	0.1	е (13.7	102		7.20	16.0
71/07/19) v	004	0.5	7 -	90	12.7	8		2.70	15.0
71/03/18		2.0	3100	2.0	0	360	12.5	8		8.20	1.4
21/04/12		0.0	0009	2.0	'n	315	11.8	108		8.10	1.8
71/05/19		7.S	31000	25.0	2 2	230	12.6	711		7.70	9.0
71/07/14		12.5	26800	15.0	3 •	210	10.8	3 60		8 8	
11/00/11		19.0	14300	2.0	'n	240	10.2	119		8.20	1:1
71/09/08		12.5	7100	10.0	2	290	10.8	110		8.20	1.4
21/10/17		0,0	5580 4600	e c	en v	315	12.0	107		7.80	۳. د د
71/27/17		0	7600	9.0	יט ר	3	14.6	108		200	e e
77:4-105		0.0	2900	2.0	0	355	14.4	107		7.90	3.3
2/44/06	88	0.0	3000	2 ° °	en e	370 8	13.8	102		8.8	e. e
72/03/20		9	6740	25.5	٠ 9	26.	13.0	•		0.10	P • •
72/03/27	10 30	5.0	2060	15.0	9	240	13.2	112		8.2	2.6

00902 D NC HARD CAC03 MG/L	18 34 65 128	114 22 22 23 40 23 14 40 23 14 40 23 14 40 23 14 40 23 14 40 23 14 40 24	33 13 16 3 33 33 13 16 3	2 2 3 3 3 4 6 4 1 3 8 6 6 1 1 3 8 6 6 1 1 3 8 6 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	5 5 13 50
00900 TOT HARD CACO3 MG/L	107 128 177 263	228 112 165 169 169 144	101 124 131 145 154	173 184 184 187 188 188 188 189 190 190 190 190	1380 170 170 190 190 190 190 190 190 190 190 190
00445 C03 ION C03 MG/L	0000	0 0 0 0 0 0 0 0	00000		•
00440 HC03 ION HC03 MG/L	108 114 136	138 110 127 127 148 158 160 119	113 138 138 153 150	130 182 183 183 184 185 186 186 187 187 187 187 187 187 187 187 187 187	
00410 T A.K. CAC03 MG/L				113 116 128	1121 1122 1133 1134 1135 1136 1137 1138 1138 1138 1138 1138 1138 1138
70301 DISS SOL SUM MC/L	116 150 213 327	283 131 197 176 198 173 133	113 135 152 167 173 181	205 219 219 203 203 140 144 156	210 133 124 176
70300 RESIDUE DISS-180 C MG/L	122 158 216 338	308 132 220 171 171 208 211 183 184	151 133 161 174 178 200	208 222 222 222 1522 118 118 118 117 117 117	1986 226 128 128 138 139 220 220 220 220 220 220 220 220 220 22
TIME OF DAY	99 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	17	188733 38338		288888888888888888 222 822 822 822 823
DATE FROM TO	67/06/29 67/07/26 67/09/07 67/12/15	68/03/07 68/05/27 68/08/28 69/12/05 69/02/04 69/03/04 69/04/03	69/06/05 69/07/08 69/08/04 69/09/02 69/10/15	69/12/02 70/01/12 70/03/04 70/03/04 70/03/06 70/03/06 70/03/04 70/03/04 70/03/04 70/03/04 70/03/04 70/03/04 70/03/04 70/03/04 70/03/04	71/02/19 71/02/19 71/03/18 71/05/19 71/05/19 71/05/19 71/05/19 71/11/12 72/02/08 72/03/19

	000		¥C/L																																3.0	16.0	2.0	0.4	0.0	0.0	. •	79.9	9	0	0.6	0.1	1.0		٦.0	3.0	2.0	o. 1	2.5	
	12900	PHOS-DIS	MG/L P	0.390	0.530	0.080	0.490	1.080	0.820	0.690	0.320	0.170	0.140	0.550	0.110	0.430	0.200	0.190	S C		0.030	0.230	0.020	0.030	0.120	0.160	0.00	0.040	0.130	0.010	0.090	0.040	0.100		0.160	0.250	0.370	0.00	0.100	0.160		95	900	010	0.030	0.010	0.080	0.200	0.130	0.120	0.110	0.010	0.010	
	99900	PHOS-DIS	MC/L P	0.430	0.720	0.080	0.580	1.200	0.820	0.720	0.330	0.210	0.150	0.550	0.160		0.210	0.200	0.020		0.240	0.490	0.230	0.00	0.220	0.250	0.080	0.040	0.140	0.100	0.100	0.00	0																					
	9990	PHOS-TOT	MG/L P																					0.190	0.550	0.270	0.080	0.080	0.180	0.130	0.240	0.430	0.130	81.0	0.210	0.270	0.350		0.230	0.260	35.0	200			0.110	0.160	0.040	0.270	0.160	0.180	0.140	0.110	0.120	
IBBY DAM	00900	NO263NO3	HC/I																																			0.1	0.1	0.1	,	3.5		6	0.0		0.5	0.2	0.2	9.0	0.5	6.9	0.2	
KOOTEMAI RIVER BELOW LIBBY DAN	81900	X03-X	7/5M																	0.09	0.0	0.0	8.0	0.0	9.0	0.18	0.28	0.25	0.24	0.13	0.17	0.24	5 6	3 6	0.16	0.25	0.32	0.0	0.10	0.10	25.	9.5	88	3 6	0.03	8	0.19	0.22	0.24	0.59	0.48	0.79	0.17	
KOOTENAI R	00613	M02-N	1/5K																		0.010	0.010	0.010	000	000	0.00	0.00	0.00	0.010	0.020	0.110	0.010	96.6	36	300	0.020	0.020	0.00	0.010	88	38	88	8	8	98	8	0.00	0.00	000.0	000	0.00	0.00	0.00	
	00610	NH3-K	MG/1.																	0.100	0.760	0.360	0.400	0.030	0.050	0.060	0.110	0.060	0.090	0.020	0.030	000	0.020		90	0.070	0.200	0.00	0.010	0.360	200	3 5	36	9	0.00	9	0.150	0.130	0.110	0.030	0.00	0.00	0.00	
	00605	M 5380	MG/7.																	0.660	0.000	0.360	000	0.160	0.100	0.110	0.000	0.000	0.070	0.120	0.310	0.180	0.120	9	0.0	0.150	0.110	0.00	0.00	0.070	27.0	0.180			0.00	5	0.230	0.120	0.160	0.280	0.210	0.240	0.210	
4	00900	TOTAL N	1/2H																	0.85	0.85	0.73	0.49	0.24	0.21	0.35	0.47	0.39	0.41	0.29	0.62	0.51	0.18	3 5	3	0.49	0.65	8.	0.12	0.53) i	9.55) (2.0	0.27	42.0	0.57	0.47	0.51	0.92	9.76	1.10	9.40	
TABLE 37.3 CHECKAL DATA		TOE .	P. F																18																																			
TABLE 37.3		PA TE	2	11/09/01	67/10/11	67/11/07	67/12/15	68/01/24	68/03/07	68/04/24	68/05/21	21/90/89	68/07/23	68/08/28	68/10/01	68/12/05	69/02/04	69/03/04 00/07/07	69/04/03	69/06/05	69/07/08	40/00/69	69/09/02	69/10/15	69/11/04	69/12/02	70/01/12	70/02/04	70/03/04	70/04/06	70/05/06	70/06/04	90/00/0Z	40/00/04 10/00/04	70/10/22	70/11/16	70/12/07	71/01/19	71/02/19	71/03/18		67/09/7/	71/00/11	17/00/12	1/80/11	21/01/12	27/11/12	71/12/17	72/01/05	72/02/06	72/03/13	72/03/20	72/03/27	

PACE	T.DGE 0.	CALCTUM CA, DISS	00925 MGMS IUH MC, DISS	SODIUM NA, DISS	00935 PTSSIUM K,DISS	00940 CHLORIDE CL	00945 SULFATE SO4-TOT	00950 FLUORIDE F,DISS	00955 SILICA DISOLVED	
2		7/2	1/2	1 / OE	1	ì	1	1 /25	1	
67/06/29		32.0	9.9	1.40	0.50	1	11	0.50	4.3	
92/10/15	06 91 91	37.0	8.7	1.60	1.60		8	0.70	5.2	
67/09/07		53.0	0.11	2.80	9.5	7 6	8 5	9.5		
68/03/07	_	21.0	12.0	5 F	8.0	n ~	114	96.0	4.6	
68/05/27		33.0	7.1	1.50	0.60	1 74	76	0.40	6.3	
68/08/28	_	49.0	10.0	2.40	08.0	7	99	1.20	5.1	
68/12/05		42.0	12.0	3.00	0.80	2	%	0.00	6.3	
69/02/04		46.0	13.0	3.40	0.80	en i	77	0.0	7.5	
69/03/04	_	46.0	13.0	3.50	0.80	7	44	1.10	7.2	
69/04/03		0.04	0.11	e .	8.6	~ ~	æ :	8.0	e .	
69/05/04 69/06/05	_	5 5	9.0	2.5	9.0	-	7 2	2 5	, c	
69/07/08		2	9 00	2.10	0.50	1 0	1.	9	, 4 , 4	
9/08/04		35.0	11.0	2.60	8.0	1 74	27	0.20	. 47	
69/09/02		38.0	12.0	3.30	2.60	7	28	0.20	5.2	
69/10/15	-	39.0	14.0	3.60	0.80	7	Ř	0.70	5.2	
69/11/04		41.0	13.0	4.50	1.00	m	38	0.50	6.8	
69/12/02		47.0	14.0	4.10	2.20	ın ·	41	0.70	6.7	
70/01/17	_	0.0	2.5	9.5	8.5	3 u	/4	3 6	7.7	
70/03/04	14 15	20.0	14.0	9	1.20	n •n	ş :	1.10	7.7	
20/04/06	_	45.0	14.0	8.9	1.00	· ~	90	0.0	0.9	
70/05/06	14 30	33.0	8.7	2.90	₽.20	~	25	09.0	5.9	
70/06/04		23.0	6.0	1.90	0.50	-	13	0.20	3.0	
70/07/06	_	32.0	ه ه :	2.40	0.60	~	50	0.20	4.5	
70/08/04	14 15	98.0	7.6	2.40	0.50	~ (56	0.50	8.0	
10/60/0/		9 5	2.5	8.5	9.0	~ •	Ħ:	9.6	2.6	
77/01/01		0.64	12.0	÷ 4	8.6	Λ ≺	141	9.5	7.5	
70/12/07		46.0	13.0	5.70	1.10	• •	94	1.10	2 2	
61/10/1/		0.64	14.0	5.20	0.70	. 21	42	0.0	9.9	
71/02/19	_	42.0	12.0	4.10	0.0	m	35	1.10	7.0	
71/03/18	_	47.0	13.0	2.90	1.00	ď	44	1.50	5.5	
71/04/15		40.0	12.0	9. 6.	 	~ ;	*	1.10	7.1	
/1/02/19	_	76.7	, , , ,	3.6	2.0	7 .	វ :	9.6	v. 6	
71/00/17		23.0	•	8 9	200	٠,	= 1	0.50	9 •	
71/08/11	88	0.15	7.00	2.5	08.0	- 4	3 5	0.00	# 4 4	
21/09/08		36.0	10.0	3.20	0.60	- 6-4	78	0.70	9	
21/01/12	_	41.0	13.0	4.20	0.40) - 3*	35	6.0		
21/11/17	_	44.0	13.0	4.40	0.90	'n	33	0.0	5.7	
71/21/17		0.64	14.0	5.10	2.80	'n	42	1.00	7.0	
72/01/05	_	45.0	14.0	4.40	0.00	'n	41	1.00	7.0	
72/02/08	_	48.0	อ.รา	5.30	0.70	9	43	1.10	7.3	
72/03/13	_	0.0	11.0	9.4	8.	'n	e :	0.90	6.8	
72/03/20		o (٠ <u>٠</u>	R. F	1.00	7	52	0.60	4.6	
17/03/71		35.0	9.5	3.10	0.80	m	5	0.50	9.0	

KOOTEMAI RIVER BELOW LIBBY DAM

CIRCHIUM CR. TOT UC/L

01032 CHROKIUM MEE -VAL UG/L		000000000000000000000000000000000000000
O1030 CERONIUM CR, DISS UG/L		
01027 CADMIUM CD, TOT UG/L		88mmmmmmmmmm VVVVV
01025 CADMIUM CD, DISS UG/L		000000000000000000000000000000000000000
01022 BORDN B, TOT UG/L		
01020 BORON B,DISS UG/L	099099999999999999999999999999999999999	200200000000000000000000000000000000000
01010 BERTLIUM BE, DISS UG/L		888888888888888888888888888888888888888
01005 BARIUM BA, DISS UG/L		222 222 222 200 200 200 200 200 200 200
01002 Absenic As, Tot UG/L		
01000 Arsunc As, Diss UG/L		9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
TDG OF DAY	1888888818818181818888888888888888888	
E-B	8342734434546867844444444444	1225252525222222323
PROK TO	51/06/29 51/07/26 51/07/26 51/07/26 51/07/26 58/03/07 58/03/07 58/03/04 58/03/04 58/03/04 58/03/04 58/03/04 58/03/04 58/03/04 58/12/02 58/	70/10/22 71/01/15 71/02/19 71/02/19 71/02/19 71/02/19 71/02/19 71/02/19 71/11/12 71/02/03 72/02/03 72/03/20

i	
2	١
_	,
i	١
į	į
ļ	1
ξ	j
4	٥
t	
٢	1
•	
1	ì

KOOTENAI RIVER BELOW LIBBY DAM

01056 MANGNESE MN,DISS UG/L		25.0 48.0 14.0 22.0 28.0 38.0 11.0	22.0 28.0 20.0 57.0 0.0 250.0 43.0	20.00 20.00 20.00 20.00 20.00	20.0 30.0 10.0 30.0 10.0
01055 MANGNESE MN UG/L	11.0			30.0 130.0 20.0 < 10.0 10.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00
01051 LEAD PB, TOT UG/L				9 9 4 6 8 1	7 7 112 124 14
01049 LEAD PB,DISS UG/L			000000	0 44 0 8 0	80180108
01046 IRON FE,DISS UG/L	100 120 70 80 60 60 70 70	115 115 101 33 33 46 113 133 133 60 60	37 20 20 110 160 160	70 00 00 00 00 00 00 00 00 00 00 00 00 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
01045 IRON FE,TOT UG/L	20 240 30 0			810 2600 420 30 220	80 70 80 80 80 80 80 80 80 80 80 80 80 80 80
01042 COPPER CU, TOT UG/L				99999	, , , , , ,
01040 COPPER CU,DISS UG/L			200001	*0	41210001
01037 COBALT CO,TOTAL UG/L				44444 / VVV	, v , v
01035 COBALT CO,DISS UG/L			000000	100100	0000000
CINE DAY	888818818183	28888888888888888888888888888888888888	2422223 2422223	88888	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
E - 3	25585445584				
FTAG FOOT 6	67/12/15 68/03/07 68/05/27 68/12/05 68/12/05 69/03/04 69/05/07 69/06/03 69/06/05	69/09/02 69/11/04 69/11/04 69/12/02 70/02/04 70/03/04 70/05/06 70/06/04 70/06/04	70/09/01 70/10/22 70/11/16 70/12/07 71/01/19 71/02/19	1,09/17 1,00/17 1,09/17 1,09/17	11/10/17 11/11/11 12/12/17 12/02/02 12/03/20 12/03/20

				×
				31616 FFC COL.T HEW-FCBR /100 NG.
	01092 ZINC ZN, TOT UG/L	# 9 9 9 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9		31503 TOT COLI NTDLENDO /100 PL
	01090 ZINC ZN, DISS UG/L	222222222222222222222222222222222222222		71900 MERCURY BG, NOTAL UG/L UG/L 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
BY DAM	01085 Vanadium V,diss UG/L		BBY DAM	71590 MERCURT RC,D138 UG/L 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
KOOTEMAI RIVER BELOW LIBBY DAM	01082 STROWTUM SR, TOT UG/L		KOOTEMAI RIVES BELOW LIBBY DAM	31503 TOT COLI MEDILEGEO /100 ML
KOOTEMAI RIV	01080 STRONTUM SR.DISS UG/L	220 220 130 230 230 230 240 250 210 220 220 220 230 120 120 120	KOOTEMAI RI	31501 TOT COLI MTHERIDO /100 ML
	01075 SILVER AG, DISS UG/L	111010100000000000000000000000000000000		01145 8ELECTOR 3E DISS UG/17
	01065 HICKEL HI, DISS UG/L	**************************************		01130 LITHING LIPESS UG/L 10 0 0 0 12 2 2 2 2 1 1 1 0 0 0 0 0 0 0
DATA	01060 NOLY NO_DISS UG/L	00000000000000000000000000000000000000	DATA	01106 ALUMITHER AL, DISS UG/L 100 200 200 300 300 4,00 300 200 200 200 200 200 200 200 200 2
TANGE 37.7 CHRUCAL DATA	TDG OF	**************************************	TABLE 37.8 CHRICAL DATA	######################################
TABLE 37.	PROM TO	70/10/22 70/11/16 70/11/10 70/11/01/19 71/02/19 71/03/18 71/03/19 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17 71/11/17	TABLE 37.	MATE 10 10 10 10 10 10 10 10 10 10

00405	MC/I																																															
00400 PH	33	8.30	8.50	7.70	7.60	8.8	9.8	8.6	 	20.	36.7	3 :	9.70	9.0	9.5	8	7.20	8	8.20	8.80	8.30	8.10	7.40	7.70	8 .0	89 (8.50	7.70	3.	4.0	0 K	7.70	7.90	7.30	6.80	7.50	04.8	8.10	07.9	8.6	3 6	9.50	2	2.50	20.7	8.10	7.80	8.10
00310 BOD 5 DAY	MC/L																1.9	•	0.9	1.3	6.0	8.0	1.1	0.7	1.0	6.0	8 .	0.0		a. c	9.0		1:1	8.0	1.4	4	0.7	e. (٠. -				7.0		1.3	1.2	1.5
00301 D0 SATUR	PERCENT	109.0	110.0	103.0	104.0	95.0	9.5	103.0	107.0	0.76	100.0	2.5	2.0	25.0	9.00	0.86	97.0	97.0	0.96	108.0	94.0	100.0	97.0	91.0	90.0	101.0	105.0	91.0	119.0	96.0 0.0	0.00	102.0	102.0	99.0	87.0	9.0	107.0	0.101	0.611	112.0	2.5	117.0	200	0.601	10.401	104.0	101.0	109.0
00300 DO	MG/L	12.5	12.7	10.8	10.3	o, ,		× ;	0.1:	6.1.	13.1);; ;;	8.1.5	1.71	5.01	10.0	4.6	9.5	9.6	10.4	11.1	11.8	12.9	12.3	12.2	12.5	11.8	10.0	8.II.	4.0	9.5		12.5	13.3	11.7	12.5	12.9	11.6	12.6	12.0		9:5	7 ::	24.5	14.0	14.0	13.6	13.0
00095 CNDUCTVY AT 25C	MICROMIN	450	390	280	150	165	C#2	262	250	720	900	טני פיני	250	320	25.	28.	240	225	255	90	280	300	320	350	305	330	8	202	185	260	3 5	ŞŞ	*	170	320	275	3	290	517	195	777	575	3 2	326	28.0	360	345	235
00080 COLOR PT-CO	UNITS		91	21	70	φ,	7 '	Ç,	יחי	Λ,	v 4	^ ;	9'	- ;	3 8	2 5	-	· IO	. 7	· ~	7	7	m	m	•	•	.	91	13			,	ı		'n			'n		•	- •	•	٠,	יש ה	, v	0	•	2
00070 TURB JKSN	PE,		2.0	9.9	0.99	o.e.	0.1	0.1	o.e.	, 1.0	9.0	9	0.0	79.0	0.24	3 5	22.0	12.0	0.4	0.8	7.0	4.0	5.0	10.0	7.0	20.0	25.0	20.0	95.0	0.4	•	0.5						3.0			9.5	9.0	9	,	2.5	0.1	2.0	30.0
00060 STREAH FLOW	CFS																32,200	3	9450	2980	2800	4600	3720	3020	7860	3240	4660	18200	20600	9380	0488	964	3610	4 300	4500	6370	3200	7700	26.300	62500	00007	971	077/	3800	26.6	3040	3080	10100
00010 WATER TEMP	CKNT	6.5	9.0	10.5	13.0	16.0	18.6	0.51 0.51	11.2	0.	1.5	1.0		 		. e	13.0	15.0	17.0	13.5	5.0	5.0	0.5	0.0	0.0	3.0	7.0	8	12.0	19.0	. e		3.5	0.0	0.0	2.5	•	6.9	5.5		2.5	7.7.	3	, ,		0.0	0.0	4.5
DEPTH	FERT																																															
TO	M	13 15																																	-											2 2	_	_
PATR	2	68/03/13	68/04/03	68/05/08	90/90/89	68/07/10	90/80/89	68/08/20	69/09/24	68/11/12	68/12/17	69/01/21	62/02/19	69/03/18	77/00/69	\$7/07/69 \$6/06/00	60/02/09	60/10/100	69/08/12	91/60/69	69/10/15	69/11/11	69/12/16	70/01/13	70/02/10	70/03/17	41/46/02	70/05/12	60/90/02	70/07/22	5/66/19 5/66/06	20/01/02	70/11/16	70/12/09	71/01/20	71/02/16	71/03/16	71/04/13	17/02/18	71/06/06	97/10/1/	71/08/16	27/04/12	77/20/17	71/2/12	72/01/06	72/02/09	72/03/16

00902 NC HARD CAC03 NG/L																																	
00900 TOT BAND CAC03 MG/L	174	71 91	243	131	33	125	17.7	Ħ	a a	7 ET	114	141	3	156	8 2	179	172	158	. %	126		150		160		140		100		150		160	
00445 003 10H 003 MG/L																																	
00440 BC03 ION BC03 MG/L																																	
00410 T ALK CACO3 NG/L	\$ 8 8	3 =	2 . %	8	87 201	ă	8 C	12	% 3	5 A	194	186	125	121	148	133	061	121	::	110	77	911	122	170	150 150	007	2 5	3	97 117	2115	61 64 64	137	1 <u>7</u> 3
70301 DISS SOL SUM MO/L																																	
70300 RESIDUR DISS-180 C MG/L										ž	•	721	179	179	259	202	213	129	S	148		183		180		951							
TDG OV DAT	222 282																														8 R 2 2		
PROFE TO	68/03/13 68/04/03 68/05/06	56/06/07 68/ 02/10	68/08/06	66/09/24	68/ 11/12 68 /12/12	69/01/21	69/02/19	69/04/22	69/05/14	60/10/69		91/60/69	69/10/15	69/11/11	70/01/13	70/02/10	70/03/17	70/05/12	60/90/02	70/07/22	21/80/92 21/60/92	70/10/13	70/17/18 70/12/09	70/01/20	71/03/16	71/04/13	71/05/18	71/07/28	71/09/17	71/10/17	2/17/12 12/12/14	72/01/06	72/03/16

00680 T ORG C C D		9.0 2.0	2.0	0:1	1.0	< 1.0	0.4	, ,	9	2.0	•	7 7	5.5	2.0		0.0	2.0	0.0	4.0	3.0	3.0		2.0	58.0	5.0	36.0	4.0	2.0	7.0	7.0	2.0	0.0	9 6	1.0
00671 PROS-DIS ORTHO MC/L P	0.840 0.350 0.170	0.087	0.050	0.170	0.069	0.170	0.180	0.096	0.026	0.028	000	0.039									1	0.210	0.080	0.140	0.240	0.200	0.200	0.120	0.200	0.050	0.020	0.060	0.010	0.140
00666 PHOS-DIS MG/L P											0.060		0.060	0.050	0.110	0.200	0.100	0,040	0.130	0.120	0.020	0.230	0.100	0.140	0.240	0.210	0.210	0.130	0.200	0.050	0.060	0.050	9	0.140
00665 PHOS-TOT MG/L P	0.930 0.410 0.240	0.130 0.190	0.069	0.200	0.120	0.170	0.190	0.140	0.380	0.180	0.270	97.0	0.100	0.220	0.170	0.210	0.180	0.360	0.170	0.150	0.310	0.250	0.260	0.130	0.280	0.310		0.160	0.350	0.100	0.199	0.320	0.030	0.170
00630 N024N03 N-TOTAL MG/L																											0.0	0.3	0.0	7.0	0.7	0.1	7 0	0.0
00618 N03-N DISS MG/L	0.03 0.05 0.11	0.09	, 0.005	8.0	0.10	0.20		0.11	0.16	0.08	90.0	č	0.0	0.0	0.10	0.19	0.20	0.20	0.10	0.11	0.10	5.5	0.03	0.0	0.27	0.25	0.02	o.30	0.0	0.10	0.10	0.0	20.0	0.05
00613 B02-N D1SS MG/L	< 0.010 0.004 < 0.010	0.009	, , 0.005	0.00	0.010	- 0.020	0.015	0.00 0.00 0.00 0.00	0.03	0.010	0.000	000	88.	0.00	0.00	0.010	0.00	0.020	0.030	090.0	0.040		0.00	0.010	0.010	0.010	0.030	0.00	0000	0.00	0.00	0.010	38	98.0
00610 NH3-N TOTAL MG/L	0.100	0.490 < 0.050	0.010	* 0.005	< 0.010 0.010	0.030	0.140	< 0.010 0.010	0.230	0.030	0,160	, c. 050	0.030	0.00	0.030	0.020	0.00	0.040	0000	0.010	0.010	0.020	0.050	0.00	0.090	0.130		0.020	0.310	0.050	0.070	0.0	31.0	0.110
00605 ORG N N NG/L	0.200	0.210	0.190	0.190	0.890	0.270	090.0	0.090	0.270		0.100		0.000	0.040	1.200	0.100	0.00	0.110	0,220	0.220	0.220	0.270	0.300	0.200	0.130	0.560	0.00	0.060	0.020	0.080	0.180	0.180	6	0.170
00600 TOTAL N N NG/L	0.35	0.90	0.20	0.26	1.00	0.50		0.21	69.0		0.30		0.07	0.08	1.33	0.32	5	0.37	0.35	0.40	0.37		0.38	0.28	0.50	0.95	,	o.38	0.33	0.23	o.35	0.37	0 33	0.3
CDGE DEPTH OF FEET	22 22 22 23 23 23														_																			
HZ	20 60					_	_		•		•		' '	_							_				_	_	_		_					

DATA
II TYDII
2
7
Ę

KOOTEMAI RIVER AT LIBBY, HOST.

00955 SILICA DISOLVED MG/L	6.9	r. 4	9	9.4	2.9	5.5	••	0.9	2.7	4.0	6.0	0.0		. 4 . 4	;														6.5	8.2								
00950 FLUORINE F,DISS MG/L																		0.70								5	3	0.70	0.90	8.6	3.5	2.6	2.5	0.60	0.90	0.80	3.5	0.70
00945 SULPATE SO4-TOT MG/L	;	R S	78 78	58	27	84	33	8 2 5	23	8	42	14:	3 %	3 5	}	17										36	79 F	35		;	4							
00940 CHLORIDE CL KG/L	•	7 -	•	ı - 4	74	7	7	7	-	2	7	7 -	٦.	; -	• -	-	~	2		*) ve	• •	7	m ·	6	7 -	→ "	•	4	4	m	7							
00935 PTSSIUM K,DISS MG/L	1.00	8.6	200	0.60	1.8	0.60	;	0.70	0.67	3 .0	0.73	1.20	6.0		0.50	0.60		0.80					1.00								6	3.5		0.00			06.9	
00930 SODIUM NA, DISS MG/L	;	2.50	1.20	1.00	2.20	2.10	,	2.20	2.70	3.20	3.30	3.20	8.5	7:1		1.70																						
00925 MCASIUM MC, DISS MG/L																													12.0	:	1.0	•		12.0		;	0.41	
CALCTUM CA, DISS MG/L																													45.0		90	77.0		41.0		•	43.0	
DEPTH																																						
TOG PAY	ខ្ល	2 : 2 :		18 13			21 81					35		38					8 :		_		36 45		2 S						3 8		2 S				R 8	
DATE PROPE TO	68/03/13	60/40/93		68/07/10	90/90/89	68/08/20	68/09/24	68/11/12	68/12/17	69/01/21	69/02/19	69/03/18	27/02/07	80/90/89	69/01/09		69/08/12	91/60/69	69/10/15	21/11/69	70/01/13	70/02/10	70/03/17	70/04/14	70/05/12	70/07/07	70/08/19	70/10/13	71/01/20	71/02/16	77/07/17	07/10/1/	71/00/16	21/10/12	71/11/09	71/12/14	72/01/08	72/03/16

TAKE 39	TABLE 38.5 CHRICAL DATA	DATA			KOOTEMAI RI	KOOTEMAI RIVER AT LIBBY, MONT.	, HOFT.			
DATE PROF 07	TDGE OF DAY	01000 ARSENIC AS, DISS UC/L	01002 ARSENIC AS, TOT UG/L	01005 BARIUM BA, DISS UG/L	01010 BERYLIUM BE, DISS UG/L	01020 BORON B,DISS UG/L	01022 BORON B,TOT UG/L	01025 CADMUM CD, DISS UG/L	01027 CADMIUM CD, TOT UG/L	01030 CHROMIUM CR, DISS UG/L
69/07/09 69/09/12 69/09/16 70/03/17 71/71/28 71/10/12	08 10 17 96 10 10 10 95 10 10 10 90	4 0-180	0 0 8	٥		10 3 8 155		0 000	7-7	0 00 0
TABLE 38.6	TABLE 38.6 CHEMICAL DATA	4			KOOTENAL RIV	KOOTENAI RIVER AT LIBBY, MONT.	, MONT.			
PATE OT OT	TDG OF TAG	01035 COMALT CO, DISS UG/L	01037 COMALT CO, TOTAL UC/L	01040 COPPER CU,D1SS UG/L	01042 COPPER CU, TOT UG/L	01045 IRON FR, TOT UG/L	01046 IRON PE, DISS UG/L	01049 LEAD PB,DISS UG/L	01051 LEAD PB, TOT UG/L	01055 MANGNESE NN UG/L
69/02/19 69/09/16 71/01/20 71/09/18 71/09/15 71/10/12 71/11/09 71/11/09 72/02/09 72/02/09	20000000000000000000000000000000000000			se 1 0 1	1 10	1450 140 170 40	200000000000000000000000000000000000000	15 0 0	vs	

01056 MALIGNESE POLDISS UG/L

01034 CEROMIUM CR, TOT UG/L

01032 CHROMIUM HEX-VAL UG/L

01092 ZINC ZN, TOT UG/L	99	01	20
01090 ZINC ZN,D1SS UG/L	30 10 10 10 10 10 10 10 10 10 10 10 10 10	9099	2222
01085 Vanadium V,diss UG/L	1		
O1082 STRONTUM SR, TOT UG/L			
01080 STRONTUM SR,D15S UG/L	260		
O1075 SILVER AG, DISS UG/L	0.0		
01065 NICKEL NI, DISS UG/L	•		
01060 MOLY MOLY WO, DISS	•		
TDE OF DAY	88888 88888		
PROFF TO	69/02/19 69/09/16 71/07/28 71/08/16	71/10/12	72/01/06 72/02/09 72/03/16

KOOTEMAI RIVER AT LIBBY, MOST.

TABLE 38.7 CHEMICAL DATA

38260 NBAS NG/L				
31616 FBC COLI HFM-FCBR /100 ML		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 20 86 86 86 86 80 120	69 4 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31503 TOT COLI MPDLENDO /100 ML	10 240 3600 3600 420 420 420 420 420 420 420 420 420 4			
71900 MERCURY HG,TOTAL UG/L				0.0 0.0
71890 MERCURY BG,DISS UG/L				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31503 TOT COLI MFDLENDO /100 ML	10 240 3606 420 420 420 420 420 420 430 430 430 430 440			
31501 TOT COLI MPINEREDO /100 NL		2 2 2 2 2 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 112 120 120 120 320	28 52 58 52 58 52 58 53 58 53 58 58 58 58 58 58 58 58 58 58 58 58 58
01145 SELENIUM SE,DISS UG/L		8		7 7 0
01130 Lithium Li,diss UG/L				
01106 Alibrium Alibris UG/L				100
TO TO TAKE	22222822222222222222222222222222222222			
PROM TO	88/03/13 88/04/03 88/05/08 88/05/06 88/05/10 88/05/10 88/12/17 88/12/17 88/12/17 88/12/17 88/12/17 88/05/18 89/04/22 89/04/22	59/09/16 59/10/15 59/11/11 59/12/16 70/02/10 70/03/17 70/04/14 70/05/12 70/05/12	70/08/13 70/09/13 70/11/13 70/11/16 70/01/20 71/03/16 71/03/16 71/03/18	71/07/28 71/06/16 71/06/13 71/12/14 71/12/14 72/02/09 72/03/16

00405 C02 MG/L	44	
00400 PH SU	8.30 8.30 8.30 8.20 8.20 8.20 8.20 8.20 8.40 8.40 8.40 8.30 8.40 8.30 8.30 8.30 8.30 8.30 8.30 8.30 8.3	7.50
00310 BOD 5 DAY MG/L	0211114110001044444114111 8686001852546001055447171	0.6 0.9 1.7
00301 DO SATUR PERCENT	104 105 105 105 105 105 105 105 105 105 105	103.0 104.0 106.0 104.0
00300 D0 MG/L	2221110 8 2121101124212111110011244444212222222222	14.1 14.1 14.5 13.9
00095 CNDUCTVY AT 25C MIC" MBO	325 345 360 375 376 376 376 376 377 378 378 378 378 378 378 378 378 378	308 308 314 156
00080 COLOR PT-CO UNITS	0.0000000000000000000000000000000000000	2 2 2 2
00070 TURB JKSN JTU		2.0 1.0 20.0
OOO60 STREAM FLOW CPS	5790 4990 3670 3670 3570 3570 3570 4380 6480 6480 6480 6410 6410 6410 6410 6410 6410 6500 5500 5500 5500	3910 2790 3370 10200
00010 WATER TEMP CENT	2.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000
DEPTH		
TDGE	28828828882888288888888888888888888888	
PATR PROFF TO	68/03/13 68/04/03 68/04/03 68/04/13 68/06/06 68/08/10 68/08/12 69/03/12 69/03/13 69/03/13 70/03/13 70/03/13 70/03/13 70/03/13 70/03/13 70/03/13 70/03/13 70/03/14	71/12/07 72/01/10 72/02/03 72/03/02

00902 NC BARD CAC03 MG/L		* 2 8 2 7 2 8 2 8 8 8 8 7 8 8 8 8 8 8 8 8	18881120011 0 H
00900 TOT BARD CAC03 NG/L	131 1146 117 1133 237 279 279 127 136 136	148 1549 1640 1640 1640 1640 1640 1640 1640 1640	110 110 140 140 150 150 150 160 160 160 160 160 160 160 160 160 16
00445 C03 ION C03		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 	000000000000000
00440 BC03 ION BC03 NG/L	100 100 100 100 106 117 117 113 123 101 143	133 138 143 143 116 116 129 129 142	144 96 108 102 104 98 99 139 139 146 146 151
0C;10 T ALK CAC03 MG/L	82 82 72 73 83 83 83 117	121 122 112 108 108 109 75 118	118 106 104 104 112 113 114 114 115 64
70301 DISS 50L SUR NG/L			
70300 RESIDUE DISS-180 C NG/L		176 189 189 128 128 116 116 173	179 176 120 120 104 104
age a		124844214 1248432 1288238 1288238 128823 12882 1	88188188188188888888888888888888888888
TAN OF	66/03/13 66/04/03 66/04/17 66/05/06 66/05/06 66/05/10 66/03/10 69/03/12 69/03/12 69/03/12 69/03/13	69/10/20 69/11/18 69/11/16 70/01/25 70/03/24 70/03/12 70/05/16 70/05/14 70/09/17	70/11/17 71/01/15 71/01/16 71/01/16 71/04/16 71/04/16 71/04/16 71/04/16 71/04/16 71/11/16 71/01/10

		n Laborator	00900	00605 086 N	00610	00613	00618	00630	00665 PHOS-TOT	99900	00671	00680
2 2	0 3		MG/L	NG/1	TOTAL MG/L	DISS MG/L	DISS MG/L	N-TOTAL MG/L	MG/L P	MG/L P	ORTHO MG/L P	C C
:	i	į	l I			1	1					
/03/13	11 00					< 0.010	0.03		0.280		0.290	
/04/03	10 45		0.33	0.200	2.100	0.003	0.03		0.340		0.320	
/1/s/			0.20	9.5	07.00	70.0	0.00		0.310		0.270	
8 2			12	0.260	0.540	0.010	0.10		0.150		0.081	7.0
01/20/	18		0.26	0,150	< 0.050	0.005	0.06		0.260		0.150	1.0
90/00/			0.11	0.090	0.010	0.005	< 0.005		0.042		0.023	12.0
08/30			0.12	0.00	0.010	0.005	0.01		0.460		0.460	1.0
71/17			0.36	0.290	0.010	0.010	< 0.05		0.130		0.085	1.0
/02/12			0.42	0.170	0.030	~ 0.010	0.21		0.150		0.150	1.0
/03/18			0.22	0.00	0.010	. 0.005	0.11		0.100		0.051	1.0
/05/27			0.45	0.260	0.040	0.050	0.10		0.280		0.021	
61/90/			0.23	0.180	< 0.020	0.010	0.02		0.048		0.042	
/09/17			0.45	0.380	0.020	0.001	0.05		0.081		0.062	11.0
/10/20			0.0	0.020	0.020	0.00	0.00		0.030	0.03		8.0
11/18			0.10	0.060	0.040	0.00	0.00		090.0	0.05		6.5
/12/16			0.11	0.010	0.000	0.010	0.0		0.010	0.01		0.5
/01/28			0.19	0.060	0.020	0.00	0.11		0.040	0.03		6.0
/02/25			0.08	0.010	0.00	0.00	0.07		0.050	0.05		0.0
/03/24			0.0	0.040	0.00	0.000	0.03		0.010	0.0		1.0
104/27			9.0	0.020	0.020	0.00	0.02		0.020	0.00		1.5
/05/18			0.28	0.070	0.020	0.010	0.18		0.100	0.01		2.0
/06/16			0.20	0.080	0.030	00.0	0.0		0.060	0.0		0.5
/07/14			90.0	0.040	0.010	0.010	0.02		0.130	0.11	0.100	1.0
/08/1/			0.07	0.060	0.010	0.00	0.00		0.050	0.05	0.020	
/09/22			0.08	0.00	0.010	0.00	0.00		0.090	0.09	0.080	1.5
/10/20			0.04	0.00	0.020	0.00	0.02	0.1	0.120	0.11	0.110	2.5
/17/17			0.11	0.00	0.020	0.00	0.09	0.4	0.200	0.20	0.180	0.5
/12/15			0.16	0.010	0.050	0.010	0.0	7.0	0.180	0.18	0.160	1.5
07/10/			0.14	0.020	0.020	0.010	0.0	7.0		0.20	0.190	1.5
/02/24			0.50	0.020	0.170	0.010	0.20	0.2	•	0.13	080.0	1.0
42/50/			01.1	9.0	0.930	96.6	0.10	-:-	0.150	0.10	0.150	7.0
07/40/			11.0	0.250	9.0	86	9.50	::	00.0	000	0.00	2.0
(2/5)				0.240	011.0	96	9.5		0.110	96.0	0.030	2.5
707 (20)			17.0	2	0.00		8 6		0.0	90.0	200	9 6
			,	240	0.170	300	8 8	9,0	9000	90.0	0.00	
(00/2)			, c		0.140		200		0.00	90.0	0.0	
61/01/			0.24	0.050	0.170	0000	0.02	0.02	0.120	0.110	0.050	0.5
/11/16			1.10	0.310	0.050	0.00	0.68	0.7	0.150	0.000	0.070	
/12/07			0.25	0.200	0.050	0.00	0.0	0.0	0.130	0.100	0.060	
01/10/			0.60	0.290	0.070	000.0	0.24	0.2	0.180	0.160	0.130	1.5
/02/03	24		97.0	0.200	0.050	0.00	0.21	0.5	0.120	0.110	0.110	
/07/02	98		2.30	0.200	0.100	0.00	2.00	5.0	0.110	090.0	0.020	

00955 SILICA DISOLVED MG/L	8.7	7.9	5.2	4.4	3.0	9.9	7.0	7.5	7.0					7.0	7.0		•	/:/	5.7	4.1	!		80 80										
00950 FLUORIDE F,DISS																				07.0	0.70	0.70	0.60	0.40	0.30	0.50	0.30	1.10	1.00	0.50	1.30	0.50	0.20
00945 SULFATE SO4-TOT MG/L	8		ដ	33	27	5 7	27	*	01	8			;	33	፠			8	13	13	*	32	24	20	16	20	33	•	33	33	32	8	ដ
00940 CHLORIDE CL NG/L	8		·	7	- 7	1 7	7	7	~	m	•	4	4.	4	•	4	n	m 6	7	4	4		•	г	2	4	٣	5	9	4	4	5	2
00935 PTSSIUM K,DISS MG/L	1.00	0.90	09.0	0.50	8.0	0.60	0.75	0.69		2.0	0.80	06.0	0.00	3.0	9:		6	06.0	0.70	1.40						0.60	0.70	0.50	0.80	0.60	1.10	0.80	0.80
00930 SODIUM NA, DISS MG/L	2.50	1.80	1.40	1.00	2.90	2.00	3.80	3.00	ć	2.30	3.40		•	01.4	9.4		,	3.70	1.60	2,30						2.60	3.50	3.90	4.10	4.60	4.30	7.80	2.70
00925 MGRSTUH MG,DISS MG/L													;	13.0	13.0		Š	9.6	6.2	8.6		12.0	0.6	6.9	7.1	8.6	11.0	11.0	11.0	12.0	12.0	13.0	5.8
00915 CALCIUM CA, DISS MG/L													•	90.0	98.0		;	31.0	25.0	31.0		0.04	31.0	28.0	25.0	32.0	38.0	37.0	37.0	41.0	41.0	43.0	20.0
DEPTH																																	
TDGE OF DAY	13 8 \$ 5		_					_	_			-				_															_		
PACE POOR TO	68/03/13 68/04/03	68/05/09 68/05/08	10/90/89	68/07/10	68/06/06 68/08/20	68/11/12	69/02/12	68/03/18	69/05/27	6T/90/60	69/09/17	69/10/20	69/11/18	03/17/10	70/01/28	70/02/25	70/03/24	70/05/18	70/06/16	70/07/14	70/09/22	70/10/20	71/01/20	71/04/20	71/07/27	71/06/18	71/09/22	71/10/19	71/11/16	71/12/07	72/01/10	72/02/03	72/03/02

38260 MBAS MG/L		
31616 FEC COLI HFM-FCBR /100 ML	9727	1000 1000 250 250 130 2 33 33 2 40 1000 1000 1000 1000 1000 1000 1000 1
31503 TOT COLI HPDLENDO /100 ML	560 740 740 740 740 750 750 750 750 750 750 750 750 750 75	
71900 MERCURY HG, TOTAL UG/L		4.0
71890 MERCURY HG,DISS UG/L		0000000
31503 TOT COLI MPDLENDO /100 ML	250 2300 2300 480 250 250 250 250 1300 60	
31501 TOT COLI MPTHENDO /100 ML	46 1600 1600 490 116 119 119 119 119 127 136 136 136 136 136 136 136 136 136 136	 150 150 160 170 2100 <
O1145 SELENTUM SE,DISS UG/L		7
01130 LITHIUM LI,DISS UG/L		
01106 ALUNINUM AL, DISS UG/L		
TDGE OF DAY	65868868888888888888888888888888888888	
PROPE TO OT		

KOOTENAI RIVER AT COPELAND IDAHO

	1 DG	00010 NATER	00060 STREAM	00070 TURB	08000	00095 CNDUCTVY	00300 DO	00301	00310 BOD	00400 PH	00405 C02
2	DAY	CENT	Grs Crs	ž E	ri-co units	MICROMHO	HG/1	PERCENT	HG/L	ns	HG/L
		10.5		32.0	22	150	10.9	105.0		7.70	2.5
_		17.7		1.0	'n	250	4.6	105.0		8	2.1
_		15.6				300	9.3	98.0		8.20	1.4
_		5.5	5840	2.0	\$	280	12.0	101.8	2.0	8.60	0.5
_		6. 0	2700	2.0	s	261	12.6	102.0	2.2	9.90	41.7
		0.0	4370	2.0	٠,	278	13.1	95.0	1.5	8.20	1.5
_		0.5	3960	1.0	0	282	13.0	0.96	1.3	8.30	1.1
_		0.0	4190	2.0	S	566	13.4	99.0	2.3	8.10	1.7
		5.0	4560	2.0	'n	276	11.8	99.0	9.0	8.20	1.3
		7.5	7460	0.0	'n	208	11.2	98.0	1.5	8.20	1.0
_		10.5	33400	0.9	9	129	10.8	103.0	1.5	8.20	0.7
		11.2	35000	3.0	'n	169	11.0	108.0	2.2	8.10	1.2
		18.2	15000	2.0	'n	221	9.0	101.0	0.3	8.50	9.0
		19.5	6540	0.0		243	4.6	110.0	1.4	8.50	9.0
		10.0	6440	1.0	S	283	11.3	107.0	1.0	8.60	0.5
		7.0	4610	10.0	0	262	12.4	109.0	2.3	7.70	4.0
		• .0	4190			295	14.3	117.0	3.2	7.10	18.9
		0.0				258	14.8	108.0	1.0	7.80	3.2
		0.0	6250		m	291	14.3	104.0	1.0	8.30	1.1
		2.0	6750			212	13.2	101.0	3.7	7.30	7.9
		4.5	4630			799	12.7	105.0	2.9	7.80	3.0
		7.5	13900	4.0	S	190	11.7	104.0	2.1	7.80	2.3
		10.0	90209			157	10.9	103.0	0.3	7.30	6.2
		12.5	46200			182	11.7	117.0	2.1	7.8	15.2
		18.0	25900	2.0	2	185	9.7	109.0	9.0	7.60	3.8
		19.0	11000	1.0	2	234	9.1	103.0	0.1	7.20	12.0
		11.5	5340	1.0	e	270	10.8	105.0	2.3	7.30	10.4
		7.0	5720	3.0	5	276	12.0	105.0	1.8	8.30	1.1
		4.0	5570	1.0	'n	278	12.5	102.0	1.6	7.80	3.2
		1.0	3240	2.0	S	302	13.0	98.0	0.1	7.30	10.9
2	21 E1	0.0	3000	1.0	n	311	13.7	100.0	1.1	7.70	4.5
		0.0	2840	2.0	5	281	13.5	98.0	1.5	6.80	35.0
		0.0	13500	30.0	01	137	13.4	98.0	1.3	9.00	105.6

TABLE 40.3 CHEMICAL DATA

KOOTENAI RIVER AT COPELAND, IDAHO

00680 T ORG C C MG/L	2	5.0	1:5	3.5	1.5	1.5	0.0	1.0	1.0	2.0	2.0	1.0	1.0	•	2.5	•	1.0	
00671 PHOS-DIS ORTHO MG/L P	0.023	0.030				0.080	0.070	0.100	0.130 0.000	0.100	0.040	0.020	0.040	0.040	0.080	0.090	0.060	0.020
4 7/9M SIG-SOHA 99900		0.03	0.0	0.01	0.0	0.0	0.07	0.170	0.15 0.000	0.070	0.020	0.020	0.070	0.080	0.130	0.130	0.090	0.050
00665 PHOS-TOT MG/L P	0.150	0.040	0.010	0.020	0.080	0.110	0.110	0.200	0.150	0.110	0.050	0.050	0.080	1.100	0.120	0.130	0.110	0.120
00630 NO26N03 N-TOTAL MG/L								0.5	0.4 0.5	0.5	0.0	0.05	0.0	0.02	0.0	0.0	0.5	0.3
00618 N03-N D1SS	0.10	0.00	0.00	0.00	60.0	0.00	0.02	0.05	0.09	0.19	0.0	0.10	0.0	0.03	0.6	0.0	0.21	0.26
00613 N02-N DISS MG/L	0.050	0.00	0.000	0.00	0.010	0.00	0.010	0.000	0.020	0.010	0.00	9 6	0.00	0.00	90.	0.00	000	0.000
00610 MH3-N TOTAL MG/L	0.060	0.010 0.080	0.030	000	0.020	0.000	0.00	0.030	0.030	0.070	0.080	0.090	0.210	0.070	0.190	0.020	0.070	0.120
00605 08G N N N	0.040	0.060	0.000	0.050	0.060	0.060	0.050	0.010	0.00 0.020	0.020	0.180	0.400	2.900	0.120	0.040	0.140	0.200	0.200
00600 TOTAL N N MG/L	0.16	0.00	0.0 21.0	0.14	0.18	0.013	80.0	0.0	0.14 0.20	0.29	98.0	0.59	3.10	0.21	0.67	0.16	0.48 84.0	0.58
DKPTH																		
TDEE OF DAY			202									_		-				
DATE FROM TO	69/05/27	69/10/20 69/10/20 69/11/18	69/12/16 70/01/27	70/03/24	70/05/18	70/07/14	70/09/22	71/11/07	70/12/15	71/02/24	71/04/20	71/06/22	71/07/27	71/09/22	7/10/13	71/12/07	72/01/10	72/03/02

00955 SILICA DISOLVED NG/L	7.5	9.6	7.9	7.2	0.6	6.2	0.4			4.6											
00950 Ploblide P.Diss MC/L							0.30 0.30	9 9 9	3	9.0			6	9	0.70	0.0	08 .0	1.10	0.40	0.8°	0.30
00945 SLLFATE SO4-TOT MG/L	25 25		37	23	23	13	18	8 2	3	29		19	;		8	29	53	8	33	92	1
00940 CHLORIDE CL MG/L	46	10 A	• •	- € M	440	. ~	m	4 "	•	m		-	·	• "	•	4	m	•	•	4	8
00935 PTSSTUM K,DISS MG/L	0.80	8.8.8	3.9	1.10	0.90	0.70	1.60		1.60	1.00	1.00	•	8.0	9	0.80	0.30	0.90	0.0	1.10	0.9	0.80
00930 SODIUM NA, DISS NG/L	2.70	3.20	4.10	9.4	3.50	1.60	2.20							2 5	3.10	3.60	3.80	9.4	6. 00	4.40	2.40
00925 MGNSTUM MG, DISS MG/L			12.0	0.11	8.2	6.0	8.3	5	?	12.0	11.0	6.7	•	. 4	11.0	11.0	10.0	11.0	12.0	12.0	4.9
CALCIUM CA, DISS MG/L			40.0	38.0 8.0	28.0	24.0	31.0	8	ì	39.0	35.0	25.0	9.6	3.0	35.0	36.0	35.0	39.0	41.0	38.0	18.0
EFTSU TEST																					
P S S		• • • •			83: 88:		٠.				_	•••	_	•	_		-•	•	٠.	_	
ATAC HONT OT	69/05/27	69/09/17 69/10/20	69/12/16	72/02/02 70/02/25	70/03/24 70/04/27	70/06/16	70/07/14	70/09/22	71/11/07	71/01/20	71/03/24	71/04/20	11/05/26	71/08/18	71/09/22	71/10/19	21/11/16	71/12/07	72/01/10	72/02/03	72/03/02

KOOTENAI RIVER AT COPELAND, IDAHO

MIA
CHEMICAL D
\$0.5
TABLE

DATE PROM TO	TDGE OF DAY	01000 ARSENIC AS, DISS UC/L	01002 ARSENIC AS, TOT UG/L	01005 Barium Ba, diss UG/L	OLOLO BERYLIUM BE, DISS UG/L	O1020 BORON B,DISS UG/L	01022 BORON B, TOT UG/L	01025 CADMIUM CD,DISS UG/L	01027 CADHTUM CD, TOT UG/L	01030 CHROMIUM CR, DISS UG/L	01032 CHROMIUM HEX -VAL UG/L	01034 CHROMIUM CR, TOT UG/L
69/11/18 70/01/27		vi m .		0 0 °	0.00	° 2;		m m .		0 0		
70/05/18 70/05/18		707	;	000	800	890	;	6	,	000		
70/10/20 70/10/20 70/11/17 70/12/15	1281	00	9 •	0	10.00	0	2 2 5	m	· '			
71/01/20 71/03/24		o g o		2 % c	0.00	822	99	0 6		c		7
71/07/27 71/10/19 72/01/10			∺∞ €	1000	00.0	19			, , 181	0 7 7 0		485

KOOTEMAI RIVER AT COPELAND, IDAHO

01056 MANGNESE NN,DISS UG/L	20.0 20.0 0.0 0.0	0000 0000 0000 0000
01055 MANGNESE MN UG/L	20.0	20.0 20.0 20.0 20.0
01051 LEAD PB, TOT UG/L		, 1 2 2 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
01049 LEAD PB, DISS UG/L	111 233 7 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O1046 IRON FE,DISS UG/L	100000	888888118888 8888881188888888888888888
01045 IRON FE,TOT UG/L	200	120 120 130 130 30
01042 COPPER CU, TOT UG/L	99	
01040 COPPER CU, DISS UG/L	Ö4n4m -	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
01037 COBALT CO,TOTAL UG/L		
01035 COBALT CO, DISS UG/L	NMNMM	0000
TIME OF DAY		121288812121 12888888888888 1881288888888
DATE FROM TO	69/11/18 70/01/27 70/04/27 70/05/18 70/07/14	70/11/1/ 70/11/1/ 71/01/20 71/03/24 71/03/24 71/09/22 71/11/10 71/11/10 72/02/03

TABLE 40.6 CHENICAL DATA

Ą	
MENICAL DA	
1 40.7 G	
TABLE	

IDAMO	
3	
3	
KOOTENAT	

2									
01092 ZINC ZM, TOT UG/L			~	7	22		. =	, 10	9
01090 21NC ZN, D185 UG/L	822	199	1	•	04	3 5	12.82	8 0 9 10 0 10 0 10 0	2888
01085 VANADIUM V,DISS UG/L	0-10	• • •	4.0	0.3	•	0.0	2:2	•	.
01082 STROWTUN SR, TOT UG/L				740	8 8	8 2	3		
01000 STROWTUN SR., DISS UG/L							8		
01075 S1LVER AG, D1SS	0.0.5	0.0		0.0	1.0		0.0		
01065 MICKEL MI,DISS UG/L	• 2 •	• • •	•	^	•	~ ~	•		
01060 NOLY NO. Y NO. A	~ ~ c	• • •	•	•		۰ ۵	~		
TOR YOU									8232 3282
A PACE	69/11/18 70/01/27 70/04/27	70/05/18	70/09/22	70/11/17	7/07/20	71/03/24	71/07/27	71/39/22 71/10/19 71/11/16	71/12/07 72/02/10 72/02/03 72/03/02

TABLE 40.8 CHERICAL DATA

EDOTEDAI RIVER AT COPELAND, IDANO

36260 HOLAS HG/L																							
31616 FEC COLI 1004-PCHE /100 ME						1	% '	• -	11	100	2	CT7	2		64	ជ	-	•	•	'n	•	•	*
31503 TOT COLI METALISTICO /100 ME.	1400																						
71900 HERCURY BC, TOTAL UG/L										,	0.0	7.6	•										
71890 HERCURY HC, D188 UG/L									. 0.1			0 0	1	5.0			0.7	7		9.0	 	0.3	3.1
31503 TOT COLI MPDLENDO /100 NL	100																						
31501 TOT COL.I NETDERMO		\$ 5	3	35	3		3	8 C	330	140	:	220	*	នទ	2400	2400	901	8 8	?	OK T	1	9	3
01145 SELECTUR SELDISS UC/L		7	•		7	~	•	7			6	=======================================	1	•	97	1	2				-	•	
01130 LITHIUM LI,DISS UC/L																,	••						
01106 Aluminum Al, DISS DC/L		3	100		•	001	Ş	3		,	•	90,	}	8	9		8						
	22			8 8 25 5																			
2 2 3	7 -																						

	ĺ
4	j
ì	į
7	
-	
7	,
ì	ł

TAG	1100	00010	09000	00070	09000	00095	00300	00301	00310	00400	88
FIRCH	8	DQL.	700	JESH	8	AT 25C	3	SATUR	S DAY	:	3
2	DAY		S	Ę	UNITS	MICRORGEO	HC/L	PERCENT	MC/L	S	MC/I
68/03/13		4.5				260	13.0	107.0		7.80	2.0
68/04/03		9 .0		2.0	21	235	11.8	101.0		7.80	7.0
68/04/17	90 71	0. 8		2.0	2	295	11.7	104.0		8.20	6.0
68/05/06		10.0		3.0	9	200	11.0	103.0		9.7	5.9
90/90/89		12.0		11.0	2	160	11.0	108.0		7.80	1.8
01/10/89		18.0		1.0	∞	190	9.3	105.0		8.10	1.2
90/80/89		19.5		1.0	7	202	8.2	93.0		8.10	1.4
68/08/ 20		15.5 2.5		< 1.0	5 ~	240	9.1	96.0		7.70	3.6
68/09/24		11.2		1.0	'n	560	10.2	98.0		8.30	8.0
68/11/12		4.5		1.0	•	220	11.8	97.0		9.7	0.4
68/12/16		2.5		<1.0	'n	235	13.1	102.0		7.80	2.7
69/02/12		1.0		1.0	•	220	13.0	97.0		7.50	6.3
69/03/18		1.5		2.0	e	330	13.0	98.0		8·00	2.1
69/04/22		o.		23.0	15	170	12.1	108.0		7.60	3.5

	00902 CAC03 NG/L
	•
IDABO	00900 CACO3 MC/L 105 1123 100 113 1148 226 131 111 111 111 111 115 75
KOOTEMAI RIVER AT PORTĤILL,	00445 003 10M 003 MG/L
OTEMAI RIVER	00440 HC03 10N HC/L 79 93 72 72 73 72 73 73 73 73 73 73 73 73 109 110 110 110 110 110 110 110 110 110
8	00410 T ALK CAC03 MG/L 65 66 65 66 73 89 89 88 82 82 82 82 83 82 83 84 86 86 86 87 87 88 88 88 88 88 88 88 88 88 88 88
	NG/L SUM SUM NC/L
•	70300 RESIDUE DISS-180 C MG/L
CHEMICAL DATA	#
CHILD	12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

TABLE 41.2 CHEMICAL DATA

DATA
CHETCAL
41.3
TABLE

KOOTEMAI RIVER AT PORTHILL IDAHO

00680 T 086 C C C MG/L				0.0	0.1	3.0	1.0	5.0	<1.0	3.0	1.0	٠1.0	2.0
00671 PHOS-DIS ORTHO NG/L P	0.250	0.250	0.110	0.067	0.110	0.053	0.220	0.500	0.030	0.160	0.180	0.093	0.022
00666 PHOS-DIS NG/L P													
00665 PBOS-TOT NG/L P	0.290	0.330	0.150	0.200	0.160	0.090	0.220	0.240	0.072	0.170	0.180	0.130	0.110
00630 8024803 B-TOTAL MG/L													
00618 803-W D1SS MC/L	0.12	0.0	6.0	90.0	0.07	0.00	0.01	0.0	, 0.05	0.20	0.21	0.25	0.15
00613 H02-H DISS NG/L	0.010	0.0	0.010	0.001	<0.00>	<0.00	¢0.00\$	0.00	• 0.010	0.020	<0.010	¢0.00\$	0.010
00610 HH3-H TOTAL HG/L	8	90.0	¢0.100	0.100	0.050	0.010	0.010	· 0.005	.0.010	0.020	0.010	0.010	0.120
00000 OBC H HC/L	\$	3 2	9.	8	χ.	61.	8	2.	.19	# .	69.	61.	.28
00000 107AL # #5/1	8	: =	Ŗ	3	3.	77.	.12	22.	2.	ş	.92	\$	¥.
Ē Ē													
183	88	3 8 3 ≾			-	_	-	-	_	_			_
E E	66/63/13	2/4/1/	28/92/33 28/92/33	10/90/91	64/07/10	3/38/33	2/2/3	¥2/68/33	71/11/99	64/ 77/ 39	77/28/69	69/03/1B	69/04/22

TABLE 41.4 CHRICAL BATA

KOCTENA! RIVER AT PORTHILL, IDAMO

00956 SILICA TOTAL UG/L	9.2	9.7	8.7	7.7	5.2	4.7	3.2	5.5		6.2	7.5	8.0	8.4	10.0
00956 S1L1CA TOTAL UG/L	9.2	9.7	8.7	7.7	5.2	4.7	3.2	5.5						
00955 SILICA DISOLVED MC/L														
00950 FLUORIDE F,DISS MG/L														
00945 SULPATE SO4~TOT MG/L		8	£ 7	32	23	5¢	22	37	37	22	%	54	æ	16
00940 CHLORIDE CL MG/L		7	-	~	-	7	7	7	~	7	7	7	7	-
00935 PTSSIUM K,DISS MG/L	1.00	9.0	9.0	0.0	8.0	0.90	9.0	3.0	0.70	9.0	3.0	0 .0	0.77	0.82
00930 SODIUM NA, DISS		2.20	2.80	1.80	1.40	1.00	1.80	2.20	2.20	2.10	2.30	3.60	3.30	1.80
00925 HGHS 1UN HG, D155 HG/L														
00915 CALCIUM CA, D188 MC/L														
i s i	3 2	8	8 1	ม	3 52	\$ \$	27	67 45	57 72	11 45	\$6 92	97 20	9 1	12 00
T T C	64/03/13	64/04/03	64/04/17	64/05/06	10/10/19	01/10/89	70/80/T	02/80/89	42/60/39	64/11/13	66/12/16	69/02/12	69/03/18	69/04/22

TAME 41.5 CHRISCAL DATA

KOOTEMAI RIVER AT PORTHILL, IDAHO

	(PM-PCBR /100 NG/L													
_	MPDLENDO MPM- /100 NG. /1		094	740	740	940	420	91	4 02	089	180	094	099	086
71900 MERCURY	HC, TOTAL UG/L													
-	HC, DISS													
31503 TOT COLI	/100 ML	310	460	740	740	076	420	21	402	989	180	460	099	980
31501 TOT COLI	ACP EMEDIDO													
01145 SELECTURE	SE, DISS													
01130 LITHIUM	L1,0158 DC/L													
01106 ALIZREDHEM	AL, D155 UG/1.	•												
1.08	5	3 5	55 50	9 Y1	21 21	22	8 45	72 00	07 45	21 45	11 45	20 05	07 20	12 00
	Ē p						_					_		

12301933 - KOOTENAI R. BL LIBBY DAM NR LIBBY, MONT.

TABLE 42.1	1:	COMPOSITION	WATER QUI	ALTTY DATA	I. MATER	WATER QUALITY DATA, WATER YEAR OCTOBER 1967 TO	ER 1967 T	O SEPTEMBER 1968	ER 1968			
DATE	DIS- CHARGE (CFS)	015- 50LVED 51LTCA (\$102)	DIS- SOLVED IRON (FE) (UG/L)	DIS- SOLVED CAL- CTUM (CA)	DIS- SOLVED MAG- NE- SIUM (MG)	DIS- SOLVED SODIUM (NA)	DIS- SOLVED PO- TAS- SIUM (K)	BICAR- BONATE (HCG3) (MG/L)	CAR- BONATE (CO3) (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	015- SOLVED CHLD- RTDE (CL) (MG/L)	D1S- SOLVED FLUG- R1DE (F)
0CT. 03-15 16-24 25-31	5070 4840 4830	6.0 5.7	111	60 1 80 0 1	122	3.4 3.0		140 136 142	300	88 7 2 2 30	1.9 1.9	1 4 4 E
NOV. 01-03 04-10 11-26 27-30	4 6 3 0 4 6 2 0 4 0 8 0 3 0 6 0	 	1111	2 4 4 5 2 6 2 6	11112	00 N N	4808	142 136 144 158	0000	78 38 92 101	1.9 2.1 2.1	1.3
DEC. 01-13 14-31 JAN. 01-14		-	11 11	72 82 81 79	72 2 7	W.W. W.W.	6. 6. 7.1	152 160 160 164	ပရ ဗဂ	106 126 128 117	9.8 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	2.3 2.3 2.1 2.3
FEB. 01-26 27-29 MAR. 01-26		7.2	11 11	79 73 74	13 13 12	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	86 60	152 140 143	ବର ସହ	125 113 113 94	ଳୟ ସମ କ୍ରିଷ	2.3 2.0 2.0 1.5
APR. 01-08 09-30 MAY 01-12	3950 3960 11400 31400	46 98 44 44	11 11	64 73 35	112 112 8.8 6.8	3.2	~ • • •	143 143 115 104	00 00	% % % % % % % % % % % % % % % % % % %	20. 1. 20. 4.0 4.0	~ ~
JUNE 01-30 JULY 01-14 15-31 AGG.		w 44 w ww	1 11	33	4 4 8 2 8 4	1.1	" "	104 96 111	n 00	% £2 %		v. 44
01-18 19-31 SEP. 01-17	10800 8710 7130 8030	7.5. 4.6 7.5. 4.6	11 11	%	9.2 10 11 10	2.2 2.2	2.1	120 130 125	00 00	23 23	F. 0	4. E.S.
MTD. AVG. TIME WTD. AVG. TOMS	11100	: :	1 1 1	41 57 1210	111 290	7.9 2.8 5.8	4. 6.	115	• • •	43 76 1290	1.3 2.6 38	1.4

PRCCESS DATE 05/22/73 CDDE 30

			12	301933 -	12301933 - KOOTENAT R. BL LIBBY DAM NR LIBBY, MONT	R. 8L LI	BBY DAM NE	LIBBY,	MONT.	0151	DISTRICT CODE
TABLE 42.2	CONTRO	SITED WAT	ER QUALITY	DATA.	CMPOSITED MATER QUALITY DATA, MATER YEAR OCTOBER 1967 TO SEPTEMBER 1968	OCTOBER	1967 TO SE	PTEMBER	1968		
	DIS_ SOLVED NITRATE	DIS- SOLVED BORCN	DIS- SOLVED SOLIDS (RESI- DUE AT	DIS- SOLVED SOLIDS (TONS	DIS- SOLVED SOLIDS (TONS	HARD- NESS	NON- CAR- BONATE HARD-	SODIUM AD- SORP- TION	SPF- CIFIC CON- DUCT- ANCE	ī	CULOR (PLAT- INUM-
DATE	(MC/L)	(1/90)	180 C)	PER AC-FT)	PER DAY)	(CA, MG) (MG/L)	NESS (MG/L)	RATIO	(FICRO-	(UNITS)	COBALT
001.											
03-15	• 5	20	252	¥.	3450	203	88	•1	406	7.9	~
16-24	-	50	240	• 33	3140	200	87	∹	390	8.0	4
25-31 MOW		2	536	•33	3120	196	8	-:	389	7.8	.
9	-	91	239	33	3120	961	6	ι,	8	7.8.	•
01-10	-	2	185	.25	2310	147	35	: -:	302	8	•
11-26	0	0	318	.43	3470	215	47	. •	419	7.8	4
27-30	••	20	305	.41	2520	230	100		644	8.1	4
: 040:	•	,	į	•	6	į	•	•	į	,	•
61-10	, e	D 6	467	9	2000	236 246	111	-	451	 	•
16-11 JAN.	:	2	26	•	7/67	697	124	:	276		0
+1-10	0.	0	329	.45	2440	263	132	7.	496	7.4	7
15-31	•	30	318	.43	2880	255	121	7.	485	7.6	2
FEB.	•	•			!						
92-10	ė.	2	333	. 45	2910	254	129	٠.	483	7.6	1
67-17 1000	•	2	567	14.	2930	234	119		426	7.6	4
01-26	10	01	566	74.	2930	236	110	7	. 454	7.6	4
27-31	7	0	274	.37	2920	217	66	: -	422	7.9	. 60
APR.					i I			1	}		
C1-08	-2	0	274	.37	2920	217	66		422	7.9	ſ.
06-60		0	277	.38	2980	218	101	7.	433	7.9	•
TAN.	•	•		,			•	•		•	•
21-12		5 C	187	٠ د	000	142	æ (*	Ξ.	294	C .	•
JUNE	•	د		•	20011		7	•	777) • •	r
01-30	• 5	J	121	.16	13800	100	15	7.	212	7.7	7
۲ اعد	•	,			,						
\$1-1¢	ė,	۰ (126	.17	10300	66	19	-	204	7.5	ر 2ر
15-51 Ali6-	•	•	130	9	6179	877	7	•	747		•
01-18		0	156	.21	4550	128	29	•	268	7.6	-
16-31	••	0	200	.27	4700	162	52		331	7.7	-
SEP.	•	:	6	•			,	•		,	•
21-10	-: •	91	222	96.	4270	173	29	•	356	7.7	2
18-30	•	•	103	77.	\$530	1+1	30	7.	289	8.7	-
WTD. AVG.	.1	60	168	•23	ł	136	14	•	274	1.1	1
AVG1	7	•	236	.32	;	187	11	•	369	1.1	1
TONS		,									
PER DAY (SHOKT) 3.4	0	0106	;	ł	:	:	:	1	:	:

12301933 - KOOTENAI R. BL LIBBY DAM NR LIBBY, MONT.

COMPOSITED D15- SOL VED SOL VED CHARGE (\$102) (CFS) (MG/L)		IATER QUAL	LITY DATA	, WATER Y	EAR OCTOB	ER 1968 T	WATER QUALITY DATA, WATER YEAR OCTOBER 1968 TO SEPTEMBER 1969 DIS-	ER 1969			
•				216		-S10					
	DIS- SOLVED SILICA (\$102)	DIS- SOLVED IRON (FE) (UG/L)	DIS- SGLVED CAL- CTUM (CA)	SOLVED MAG- NE- SIUM (MG)	DIS- SOLVED SODIUM (NA) (MG/L)	SOLVED PO- TAS- STUM (K)	BICAR- BONATE (HCO3) (HG/L)	CAR- BONATE (CO3) (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL)	DIS- SOLVED FLUO- RIDE (F)
	5.4	1	38	ı	2.8	1.2	137	O	33	1.6	1.0
	1.9	;	39	11	2.7	€.	142	ij	13	2.0	æ
	6.7	;	43	12	3.2	1.9	154	9	36	1.9	3 0
	7.5	120	9,	13	3.4	<i>3</i>)	158	5.	1	9.5	6.
	7.2	21	; ;	13	3.5	æ. ø.	163	ပတ္	11	2.2	1:1
7950 8900	7.8	: :	35	10 8.3	2.9	φ. φ.	132	00	31		~ 4
	7.7	11	32 28	6.9 6.3	2.0	iù iù	126	00	13	3.6 8.	4.0
	5.0	111	328	044	м м • • • • • •	0.4	114	900	112 119 115	1.28	₩.
	4.2	11	31 33	7.7 9.8	2.2	6.	119	• •	21	1.2	.1
	5.6	1 1	42 40	11	3.5	. e	144	0 0	28 35	2.6	m w
i	5.2	1 1	32	0 0	2.0	٠. 6	123	0 0	58 28	1.3	e. •
- 53	92	1	1470	361	9	33	2560	o	922	9	16
		e e e e e e e e e e e e e e e e e e e	2	2.4 6.1 7.5 7.7 7.2 7.3 7.4 8.6 8.7 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	5.4 — 38 — 1 6.1 — 39 — 1 7.5 — 120 — 43 — 1 7.7 — 43 — 1 7.7 — 44 — 1 7.7 — 44 — 1 7.7 — 44 — 1 7.7 — 44 — 1 7.7 — 44 — 1 7.7 — 44 — 1 7.7 — 28 — 28 — 28 7.8 — 28 — 28 — 28 7.9 — 28 — 28 — 28 — 28 — 28 — 28 — 28 — 2	5.4 — 38 111 6.1 — 43 112 7.5 120 46 13 7.7 — 44 12 8.9 — 36 113 7.7 — 45 112 8.9 — 46 113 7.7 — 35 8.3 5.6 — 26 6.0 4.8 — 27 6.4 4.8 — 40 111 5.6 — 42 112 5.6 — 42 112 5.8 — 40 111 5.8 — 40 111 5.8 — 40 111 5.8 — 40 111 5.8 — 40 111 5.8 — 40 111 5.8 — 40 111 5.8 — 40 111 5.8 — 40 111	5.4 — 36 11 2.8 1 6.1 — 39 11 2.7 1 6.7 — 43 112 3.2 1 7.5 120 46 13 3.4 1 7.7 46 13 3.5 1 8.9 — 46 12 3.7 7.7 — 35 8.3 2.0 5.0 — 36 6.3 1.5 5.0 — 28 6.3 1.5 4.6 — 27 6.4 1.4 4.6 — 27 6.4 1.4 4.6 — 27 6.4 1.4 4.6 — 27 6.4 1.4 5.6 — 39 9.6 2.2 4.8 — 40 11 3.4 5.6 — 40 11 3.4 5.6 — 42 12 3.5 5.8 — 36 2.0	5.4 — 36 11 2.6 1.2 6.1 — 39 11 2.7 .8 6.7 — 43 11 2.7 .8 7.5 120 46 13 3.4 .8 7.2 7.6 44 12 3.5 .8 8.9 7.7 12 3.5 .8 7.7 — 35 10 2.9 .8 5.0 — 35 8.3 2.0 .8 5.0 — 32 6.3 1.5 .9 5.0 — 32 6.4 1.4 .7 4.6 — 32 6.4 1.4 .7 4.6 — 32 6.4 1.4 .7 4.6 — 33 2.0 .8 5.0 — 33 2.6 .7 4.2 — 4.6 11 3.4 .6 4.8 — 4.2 1.2 .7 5.0 —	5.4 — 36 11 2.6 1.2 137 6.1 — 39 11 2.7 .8 142 6.7 — 43 12 3.2 1.9 154 7.5 120 46 13 3.5 .9 158 7.2 70 46 13 3.5 .9 160 8.9 — 39 10 2.9 .9 148 8.9 — 39 10 2.9 .9 148 5.0 — 39 6.3 1.5 .9 148 5.0 — 32 6.3 1.5 .9 114 5.0 — 32 6.4 1.4 .4 104 4.0 — 32 2.0 .9 114 5.0 — 40 11 3.4 .4 104 4.0 — 3.5 .9 114 .9 134 5.0 — 4.0 11 3.5 .9 114	5.4 — 36 11 2.8 1.2 137 0 6.1 — 39 11 2.7 .8 142 0 7.5 120 46 13 3.4 .9 156 0 7.2 70 46 13 3.5 .8 163 0 7.2 70 46 12 3.7 .9 148 0 7.7 10 12 3.7 .9 148 0 7.7 10 12 3.7 .9 148 0 7.7 2.0 1.3 1.5 .9 148 0 7.7 3.2 6.3 1.5 .9 114 0 5.0 2.0 1.3 1.5 .9 114 0 4.6 11 3.4 .7 114 0 4.6 1.1 3.4 .7 114 0 5.6 — 3.2 .9 114 0 5.6 — 4.0 1.1 <td>5.4 36 11 2.8 1.2 137 0 33 6.1 39 11 2.7 .8 142 0 33 6.7 39 11 2.7 .8 142 0 33 7.5 120 46 13 3.4 .9 158 0 44 7.3 120 13 3.5 .8 156 .6 44 7.3 39 10.3 2.1 .8 158 .6 44 7.7 39 10.3 2.1 .8 125 0 44 5.6 32 6.0 1.3 1.0 114 .9 11 5.0 32 6.4 1.4 .7 112 0 14 5.6 32 6.4 1.4 .6 11 3.4 .6 11 <t< td=""></t<></td>	5.4 36 11 2.8 1.2 137 0 33 6.1 39 11 2.7 .8 142 0 33 6.7 39 11 2.7 .8 142 0 33 7.5 120 46 13 3.4 .9 158 0 44 7.3 120 13 3.5 .8 156 .6 44 7.3 39 10.3 2.1 .8 158 .6 44 7.7 39 10.3 2.1 .8 125 0 44 5.6 32 6.0 1.3 1.0 114 .9 11 5.0 32 6.4 1.4 .7 112 0 14 5.6 32 6.4 1.4 .6 11 3.4 .6 11 <t< td=""></t<>

12301933 - KOOTEMA! R. BL LIBBY DAM NR LIBBY, MONT.

					CACL SASSATES OF SACT SECTION SALES STATE	404.00	TO CE		070		
DATE	DIS SOLVED NITRATE (NG3)		015- 80LYED 80LIDS (RESI- DUE AT 180 C)	DIS- SOLVED SOLIOS (TONS PER AC-FT)	DIS- SOLVED SOL IDS (TONS PER DAY)	HARD- NESS (CA+MG)	NON- CAR- BONATE HARD- NESS	SODIUM AD- SORP- TION RATTO	SPE- CIFIC CON- DUCT- ANCE (MICRO-	PH (UNITS)	COLOR (PLAT- INUN- COBALT UNITS)
061.	7,	G	170	.23	3060	139	27	۲.	285	7.9	m
NOV- 01-30		Ö	172	.23	2560	143	27	•	287	9.0	1
01-28		20	196	.27	1980	157	31	-	321	9.0	4
60	8	2.	208	• 5 8	1850	169	J #	7	331	S * 8	1
17-31	6.5	20	211	.29	1570 2150	169	38		335	1.9	2 =
01-11 12-30	.1	99	184	.25	3950 7860	139	31		273	7.9	10
C1-09 10-31	• -	0 0	156 132	.21	9010	114	11		239	7.4	01 PU
10NE 01-09 10-21 22-30	U	900	114 123 122	.16 .11. 71.	17300 13400 15600	95 106 94	- 2 <u>1</u> 8	777	195 268 189	8.0 7.9	8 2 1
JULY 01-16 17-31 AUG.	00	10	137	.19	12300 6330	109	12		233	7.3 7.7	60 KV
01-31 SEP. 01-30	e e	9 0	164	.22	4040	146	28 28		305	7.8	s r
WID. AVG. TIME WID.		٠ <u></u>	142	61.	1 1	113	13	7	231	7.7	1 1
TONS PER DAY (SHORT)	~	: •	6440		1	}	: 1	: 1	}	1	1

	=							
	00440 MCO3 108 MCO3 MG/L	# 1	8 15 E	151	3 3	_	00440 ECO3 108 ECO3 NE/L	222 22222
tton 3	00410 T ALK C4003 NG/L	ä	6	8 2 2 2	2 Z	i ation	00410 T ALK CACO3 NG/L	225 21 25 25 25 25 25 25 25 25 25 25 25 25 25
<u>.</u>	00405 C02 HG/L	4.5	0.5 1.5	22.1.6	0:5		004.05 20.2 7, IMB	040 400000 54
) laser:	00 1 E 33	89 80 C 80 80 80 C 80 C 80 C 80 C 80 C 8	 8.7 8.2 8.2	7.83.6	2 9		9 E 3	
Corps of Engineers From Station 3 mear Libby, Montaes 1199 19' 20"	00301 0	\$ 015 7 11 8 5 1 1 2 7 11 8 5	3 7 7 5 6 6 3 7 7 8 6 6 6	102	1000	2. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	00301 DO SATUR PERCENT	26 26 26 26 26 26 26 26 26 26 26 26 26 2
S. Co.		4.0.0000		2553	9,99	1. S. Corp r. at 119by m. 115° J per 329.0 Setera Mil.		6 00-00-00-00-00-00-00-00-00-00-00-00-00-
Py The U.S. 00", Lone. Eilenster	3 2 8- 7	22222	1222	.2222	1003		00300 00 100 140 140 140 140 140 140 140 14	מארבונונובייאים א
raised by T r below Lib go 22' 00'', River Kill	Elevation 646 Mei 00094 003 CHENCITY 10 FIELD HICHOMED ME/I	182521	1222	2022	252	Existed by The U. S. Corps Frotund By The U. S. Lorps 46 23 SS" Long. 113 32 14 Ever Elizante 23 30 0 Elever Elizante 53 Heter Hill.	CHOCCTY TIRLD NICHORN	8 2 2 3 3 2 5 2 5 2 5 2 5 2 5 5 5 5 5 5 5
Physical and Chemical Data Obtained by The U.S. Ecotemnia Elver below 118by Dem, Let. 46° 22' 00'', Long. Exter Elizator	00076 TURB TRBIDGER BACH PTU	48222224	^ m m m	.nn 8	(m m m	Table 46. Physical and Chemical Date Obtained by The U. S. Corps of Engineers from Station Enotemai Elver at Libby Lat. 480 23' 52' Long. 1159' 24' Elver Elometer 239.0 Elver Elometer 239.0 Elver Elometer 239.0	00076 TURN TRAIDERN EACH PTO	7854024420324 2242
d O	000010 1100 1100	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		2.0.5	2.0.0	G Chamada	00010 1100 CENT	9 54 44 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
stcel a	106	1530 1110 11335	1530 1250 1515	1223	1360 1360 1360	sical a	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1625 0730 1630 1630 1641 1641 1641 1640 1640 1640 1641
	8	นมีละยัยผม	* ~ ~ ~	. w w w	1244	£	á	****************
Table 45.	9	# ## ##	1 1 1 1	1111	3 2 3	, y.	9	111111111111111111111111111111111111111
1	HA H	5961	1970			2	PATE:	1969
	og sit					9 8		
	00440 RC03 10W RC03 RC/L	152 165 185	235	및 S	124	004400 004400		158 1138 1130 1130 1131 1131
7								
tation	00410 T ALK CACO3 HE/L	888	82.51	32.2	101	tation 2 00410 7 ALK	1000 1000 1000 1000 1000 1000 1000 100	1120 100 100 100 100 100 100 100 100 100
From Station	00405 00410 C02 T ALK CAC03 NG/L NG/L	0.6 4.1 0.5 113		2.7 110 2.3 75 2.0 82	1.2 101	From St.s 00405 002		0.6 1.0 1.0 1.0 1.0 1.3 1.3 1.3 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
inglasers From Statlov in	_		2.5			oppo 0000 EE		
Corps of Engineers From Station 1 America 15° 11' 37"	1 00400 00405 Fri CO2 BF SU NG/L	2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.0 6.0 7.5 7.3	7.9 2.7 7.9 2.0 2.0	8.3 1.0	e of Engineers and 17' 02" 1. 31. 50.301 00400 DO FR	SU NG/L	
	1 00400 00405 Fin 002 Bir SU NG/L	2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	96 8.5 96 8.0 2.5 100 8.3 1.1	102 7.9 2.7 106 7.8 2.3 97 7.9 2.0	95 8.2 1.2 94 8.3 1.0	e of Engineers and 17' 02" 1. 31. 50.301 00400 DO FR	MATER SU MG/L. 101 8.3	8.7.88.7.8.3.4.6.9.3.0.9.3.6.9.3.0.9.3.6.9.3.6.9.3.6.9.3.6.9.3.6.9.3.6.9.3.6.9.3.6.9.3.6.9.3.6.9.3.0.9.3.6.9.3.0.9.3.0.9.3.0.9.3.0.0.0.0.0.0.0.0.0
	1 00400 00405 Fin 002 Bir SU NG/L	102 9.6 102 9.6 103 9.6 103 7.8 103 7.8 104 1.1	12.7 % 8.5 12.5 % 8.0 2.5 13.2 103 8.3 1.1	102 7.9 2.7 106 7.8 2.3 97 7.9 2.0	9.1 95 8.2 1.2 10.9 94 8.3 1.0	e of Engineers and 17' 02" 1. 31. 50.301 00400 DO FR	MATER MG/L PRECENT SU NG/L 10.8 101 8.3	100 8.3 111 8.6 112 7.8 112 7.9 112 7.9 112 7.9 113 8.3 110 8.1 110 8.
	1 00400 00405 Fin 002 Bir SU NG/L	10.3 % 8.3 8.7 89 8.4 9.6 102 7.8 10.2 109 8.6 10.9 10.9 8.6 12.1 105 7.8 11.1 105 7.8	12.7 % 8.5 356 12.5 % 8.0 2.5 375 13.2 100 350 13.8 103 6.3 1.1	262 10.3 10.2 7.9 2.7 11.9 2.0 2.7 2.9 2.0 2.7 2.9 2.0 2.7 2.9 2.0 2.7 2.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	255 9.1 95 8.2 1.2 290 10.9 94 8.3 1.0	Data Obtained By The U.S. Corps of Engineers Excepted List at United at Marinad Lat. 400 30'00'long. 1150 27'02" Extra Elimenta 87; Marcas MSL Elevation 67; Marcas MSL MSL ORDSA CORD DO NO NO PER TRES COMMUNITY NO DO PE	FIRED 16/1. PERCENT SU NG/1. 220 10.6 101 6.3	9.6 101 6.3 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
		272 10.3 96 0.3 206 0.7 09 0.4 249 11.3 122 0.6 285 10.2 109 0.6 287 10.3 103 0.6 372 12.1 109 7.8 136 13.1 99 0.6 0.5	2 13.5 12.7 % 8.5 2 336 12.5 % 8.0 2.5 1 375 13.2 100 2 350 13.8 103 8.3 3.1	33 262 10.3 102 7.9 2.7 2.9 2.0 3 229 8.6 97 7.9 2.0 3 3 239 8.6 97 7.9 2.0	3 275 9.1 95 8.2 1.2 3 220 10.9 94 8.3 1.0	Chemical Data Obtained by The U.S. Corps of Engineers Lat. Aden 30'00" Long. 115' 17' 02" Liver Kilemater 35'.9 Elevation 637 Neters 961. MARS. TREE. 00094 00300 00301 00400 MARS. TREE. 00094 00300 00301 00400 FF.	TREATMENT FIELD SATER MACH PTV HULLSONED HG/L PERCENT SU NG/L 13 21 21 22 21 20 20 20 20 20 20	165 9.6 101 6.3 276 10.0 111 1.6 277 10.0 111 1.6 278 10.0 111 1.6 278 10.1 112 7.9 278 10.1 112 7.9 279 10.0 112 7.9 279 10.0 113 1.0 279 10.0 113 1.0 279 1.0 270
and Chandeal Date Obtained by The U.S. Corps of Keetman Liver and Resident Let. 48 22 20' Let. 149 13' 3 Execution of the University of 13' 3		8.5 15 272 10.3 % 8.3 12.2 15.1 10.3 % 10.3 15.1 12.2 15.1 206 8.7 10.2 15.1 15.1 15.2 15.1 15.1 15.2 15.1 15.1	0.5 2 12.7 % 8.5 1.0 2 356 12.5 % 8.0 2.5 0.5 1 375 13.2 100 8.3 1.3 6.0 2 350 11.8 103 8.3 1.3	11.0 53 262 10.3 102 7.9 2.7 11.0 54 17.3 10.2 10.6 7.8 2.3 11.0 3 21.9 8.6 97 7.9 2.0 16.0 17.9 2.0	11.5 3 275 9.1 95 8.2 12 5.5 3 280 10.9 94 8.3 1.0	and Chemical Data Obtained by The U.S. Corps of Engineers Excessed Mixture at Warland Lat. 480 30'00' Long. 1190 37' 02" River Kilmenter 367.9 River Kilmenter 367.9 River Corps. 0000 0000 0000 0000 WATER TWES CORPORATY DO DO PE	THE TREMGES FIRED 6/1. THE SU NG/1. CHE ACT I'V NICHORD NG/1. THE SU NG/1. 7.0 13 210 10.6 101 6.3	13.3 145 13.3 145 13.3 145 13.3 145 13.4 145 13.4 145 13.5 146 13.6 146 13.6 146 13.7 146 13.7 147 14.7 147 14.
		8.5 15 272 10.3 % 8.3 12.2 15.1 10.3 % 10.3 15.1 12.2 15.1 206 8.7 10.2 15.1 15.1 15.2 15.1 15.1 15.2 15.1 15.1	0.5 2 12.7 % 8.5 1.0 2 356 12.5 % 8.0 2.5 0.5 1 375 13.2 100 8.3 1.3 6.0 2 350 11.8 103 8.3 1.3	33 262 10.3 102 7.9 2.7 2.9 2.0 3 229 8.6 97 7.9 2.0 3 3 239 8.6 97 7.9 2.0	11.5 3 275 9.1 95 8.2 12 5.5 3 280 10.9 94 8.3 1.0	Chemical Data Obtained by The U.S. Corps of Engineers Lat. Aden 30'00" Long. 115' 17' 02" Liver Kilemater 35'.9 Elevation 637 Neters 961. MARS. TREE. 00094 00300 00301 00400 MARS. TREE. 00094 00300 00301 00400 FF.	TIME CHIM MAN FT HIGHORY ME/L PROCESS SU ME/L 1865 9.0 21 210 10.6 101 6.3	110 120 120 121 122 123 124 125 126 127 127 127 127 127 127 127 127
and Chandeal Date Obtained by The U.S. Corps of Keetman Liver and Resident Let. 48 22 20' Let. 149 13' 3 Execution of the University of 13' 3		8.5 15 272 10.3 % 8.3 12.2 15.1 10.3 % 10.3 15.1 12.2 15.1 206 8.7 10.2 15.1 15.1 15.2 15.1 15.1 15.2 15.1 15.1	2 1010 0.5 2 12.7 % 8.5 3 1020 1.0 2 356 12.5 % 8.0 2.5 3 1025 0.5 1 375 13.2 100 8.3 1.3 2 1000 6.0 2 350 11.8 103 8.3 1.3	5 1130 11.0 53 262 10.3 102 7.9 2.7 5 1130 1130 13.0 94 173 10.2 106 7.8 2.3 10 045 17.0 3 219 8.6 97 7.9 2.0	4 1130 13.5 3 275 9.1 95 8.2 1.2 6 1130 5.5 3 3 290 10.9 94 8.3 1.0	and Chemical Data Obtained by The U.S. Corps of Engineers Excessed Mixture at Warland Lat. 480 30'00' Long. 1190 37' 02" River Kilmenter 367.9 River Kilmenter 367.9 River Corps. 0000 0000 0000 0000 WATER TWES CORPORATY DO DO PE	THE CHIEF TRACEGES FIELD SATUR 13 13 15 10 13 210 10.6 10.8 10.8 6.3	13.00 13.1 13.00 14.0

Ä # %

	ZINC ZM,DISS KG/DAY	460 1356 137 137 137 138 138 138 138 138 138 138 138 138 138
(STATION 1)	MANCHESE MW, DISS KG/DAY	345 345 353 353 353 353 374 376 374 376 376 376 376 376 376 376 376 376 376
LOADING CALCULATIONS, KOOTENAI RIVER NEAR RETRORD (STATION 1)	IRON FE,DISS KG/DAY	539 421 536 536 536 536 536 537 537 537 537 537 537 537 537 537 537
KOOTENAI RIVE	LEAD PB,DISS KG/DAY	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ALCULATIONS,	COPPER CU,DISS KG/DAY	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOADING C	ARSENIC AS,DISS KG/DAY	5,000000000000000000000000000000000000
TABLE 47.3	DATE	67/06/29 67/01/27 67/01/27 67/11/07 67/11/19 68/01/12 68/03/19 68/03/19 68/03/19 68/03/19 68/03/12 68/03/12 68/03/12 68/03/12 68/03/12 69/03/03 69/03/03 69/03/03 69/03/03 69/03/03 69/03/03 69/03/03 70/03/03 70/03/13 71/03/11 71/03/11 71/03/11 71/03/11 71/03/11 71/03/11
	TOT N N KG/DAY	72911 50168 5189 5189 5189 2336 2036 2633 2633 2641 7944 2732 2873 27321 1095 4,704 5,559 5,559 5,559 6,579
_	ORG N N KG/DAY	9744 53281 16533 16533 16533 1654 11054 11054 11054 11054 11054 1105 1103 1103 1103 1103 1103 1103 1103
EXFORD (STATION 1)	NO3-N N KG/DAY	3100 8413 9413 5241 1354 11354 1136 1136 1149 1149 1149 1180 1180 1180 1180 1180 1180 1180 118
06	NH3-N TOF N KG/DAY	0 111217 41932 4612 464 6411 1248 3903 11248 1139 1139 1139 1139 1139 1139 1139 113
LOADING CALCULATIONS, ROOTENAI RIVER NEAR	PHOS-TOT P KG/DAY	1846 3335 445 445 321 10137 23004 445 321 11318 11318 1346 1346 1346 1346 1346 1346 1346 1346
G CALCULATIONS,	PHOS-DIS	6968 899 8060 5060 3060 17331 115343 11643 136 136 136 136 136 136 136 136 136 13
LOADI	PHOS-DIS ORTHO-P KG/DAY	6304 6453 6443 6443 6443 13221 13221 13221 13221 13221 1323 1323 1323 1323 1323 1323 1323 1323 1323 1323 1323 1323 1323 1323 1324 1325 1325 1326 1326 1326 1326 1327 1328 1328 1328 1328 1328 1328 1328 1328
TABLE 47.2	DATE	67/06/23 67/10/10 67/10/10 67/10/10 67/10/10 67/10/10 68/06/23 68/06/23 68/06/23 68/06/23 68/06/23 68/11/06 68/10/06 68/

TABLE 48.1			LOADING	CALCULATIONS,		MOOTENAI RIVER BELOW LIBBY	BY DAM (STATION 3)	ON 3)		
DATE	DISCHG HEAN DLY CPS	RESIDUE DISS-180 T(M)/DAY	CALCIUM CA, DISS T(M)/DAY	HGNSIUM HG,DISS T(H)/DAY	SODIUM Na,DISS T(M)/DAY	HC03 10N HC03 T(M)/DAY	SULFATE SO4-TOT T(M)/DAY	CHLORIDE CL T(M)/DAY	SILICA S102 T(M)/DAY	FLUORIDE F,DISS KG/DAY
91/70/17	0000	75071	8777	110	105	11031	2363	361	898	56769
67/07/26	18200	7037	1648	8 2	: r	5077	1692	62	232	31175
67/09/07	6930	3663	889	187	47	2306	1153	14	86	22045
67/10/11	4790									
67/11/07	4330	1410	•	:	9	,00	7767		35	6543
68/01/24	970	7101	Ř	7/	9	70/	t	:	3	
68/03/07	4330	3263	752	127	37	1462	1208	54	83	9536
68/04/24	32500	12015	3000	979	137	10013	2367	164	573	36411
68/06/17	31000									
68/07/23	17500		***	ě		0.00	000	;	è	24,333
68/10/01	8260	4	666	507	r,	6/67	1300	ì	707	71547
68/12/05	6430	1854	455	130	33	1604	390	23	89	9756
69/02/04	2900	1476	326	92	5 *	1121	312	20	53	6387
69/03/04	2700	1394	ğ	8	23	1057	291	21	87	7268
69/04/03	6110	2736	865	79 5	64	2078	268	24	124	11961
/0/0/69	00717	3667	1,04	6.50	3 5	13703	796	26.	676	20003
69/07/08	33500	10903	2951	689	25	10821	1394	131	369	24592
40/00/69	11700	609	1002	286	74	1951	773	57	137	5726
69/09/02	6560	2793	919	193	. 53	2456	677	38	83	3210
69/10/15	5550	2417	230	190	49	2037	462	57	17	9206
69/11/04	4340	2124	435	138	80 G	1572	*0*	2 2	7.5	5310
20/17/02	300	127	2.0	5	₹ #	1024	26.5	÷ 2	617	3377
70/02/04	2700	1361	317	92	3 %	1090	30,	32	77	5286
70/03/04	2400	1304	294	82	35	696	300	8	45	0979
70/04/06	3080	1673	339	106	45	1206	362	56	45	6783
70/05/06	10800	4017	872	530	"	3171	199	8	951	15857
70/06/04	9679	2211	1622	266	189	9362	1295	1 6	667	19919
70/08/04	8650	3302	762	205	21	2815	250	707	17	10583
10/60/01	5340	2313	497	144	8	1111	405	27	*	7840
70/10/22	4220	1931	444	124	77	1425	423	87	53	9294
70/11/16	0405	1340	2 6	01	7 2	1256	26	£ ;	4 4	9344
71/01/19	2900	1391	3	8	3 6	1050	298	901	7.4	6387
71/02/19	2000	2423	\$14	147	S	1676	428	82	98	13458
71/03/18	2840	1571	327	\$	T,	086	9 3 3	x :	8	10424
71/04/15	2,000	25/6	9	104	25	1918	466	32	1677	20681
71/06/10	28000	17315	3690	608	116	15470	1561	162	209	28385
71/07/14	25300	7305	1672	944	6	6315	1548	87	272	12382
11/00/11	14000	4522	1062	298	79	3940	119	123	116	17129
71/09/08	7500	2753	99	184	S	2367	514	S	8	12846
21/10/17	2100	23%	512	162	2 2	1760	437	2 2	60.	11231
71/17/17	992	1425	317	9	3 \$	1318	26.2	2 %	70	6362
72/01/05	7900	1533	319	8	۲ ۲	1157	291	3 2	2 2	7096
72/02/08	2800	1507	329	103	*	1117	295	41	8	7537
72/03/13	4600	2004	428	124	25	1576	371	22	001	10131
72/03/20	9	2455	549	153	S	1954	404 404	65 ×	961 84	9690 2692
17/50/7/	3077	10	8	4	;	;		:	ļ) } !

	-	•
	٠,	
-		٠

Table 48.2	LOADING	LOADING CALCULATIONS, KOOTENAI		RIVER BELOW LIBBY DAM (STATION 3)	MA (STATION	3)		Table 48.3	OI.	DING CALCULAT	IONS, KOOTENAI	RIVER BELOW	LOADING CALCULATIONS, KOOTENAI RIVER BELOW LIBBY DAM, (STATION 3)	VIION 3)
ETAG	PMOS-DIS ORTHO-P EG/DAY	PHOS-DLS P RG/DAY	PHOS-TOT P KG/DAY	NH3-N TOT W KG/DAY	NO3-N N KG/DAY	ORG N N KG/DAY	TOT N N KG/DAY	DATE	ARSENIC AS, DISS KG/DAY	COPPER CU, DISS KG/DAY	LEAD PB,DISS KG/DAY	IRON FE,DISS KG/DAY	MAMGNESE MR, DISS KG/DAY	ZINC ZN,DISS KG/DAY
67/06/29 67/07/26 67/09/07 67/10/11 67/11/07 67/12/15 68/01/24	6614 6212 848 2338 10835	7292 8439 848 2768 12039			0 0			67/06/29 67/07/26 67/09/07 67/10/11 67/11/07 67/11/15 68/01/24						
68/04/24 68/05/27 68/05/27 68/05/23 68/07/23 68/12/05 68/12/05	620 29129 12896 5995 11171 1171 324 4661 1419	6501 30039 15930 6423 11171 1121 1490			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			68/04/24 68/05/27 68/05/27 68/05/23 68/08/28 68/12/05 68/12/05				1084 852 463		
69/04/03 69/05/03 69/05/03 69/07/08 69/08/04 69/09/02 69/11/04 69/11/04	2459 3113 2459 6585 921 407 1175 394	299 3631 19674 14029 3692 1222 2336 1815 450	2580 5841 1982 450	14931 62301 10607 6421 640 407 531 640 619	2594 2594 13456 0 0 679 679 679 1321	98678 6558 10307 1284 2173 1062 808	127085 69678 20900 7866 3259 2230 2569 2645	69/04/03 69/04/03 69/05/07 69/05/08 69/09/02 69/10/15 69/11/04 69/11/02				1196 3113 5738 5738 859 1284 217 1221 741	340 510 250 79	
70/02/04 70/03/04 70/04/06 70/05/06 70/06/04 70/08/04 70/09/04	264 763 75 2378 3984 4429 3175 11045	264 822 754 2642 3984 5758 3810 1176	529 1057 980 6343 42825 5758 3810 1307	396 529 151 7967 7967 635 635 635	1652 1409 980 4493 23902 1772 0 131	529 411 904 8193 17927 5315 847 864	2577 2408 2408 16385 50792 7972 2117 1345	70/02/04 70/03/04 70/05/06 70/05/06 70/06/04 70/08/04 70/09/01	103	176	o	218 270 113 3515 0 2082 1249 483	145 341 211 766 1096 753 287	011
70/11/16 70/12/07 71/01/19 71/03/18 71/04/15	2227 3078 0 1224 1112 685 685		2405 2912 2912 1807 1370 17068	122 122 122 2502 3152	2227 2662 639 1224 695 1370	1336 915 0 0 486 3289 12289	4364 5408 639 1468 3683 7811	70/11/16 70/12/07 71/01/19 71/02/19 71/03/18	106 284 122 69 0	0000~40	000012000	172 250 250 1958 1112 1112 548 548	178 474 0 3059 299 274 274	267 333 426 426 367 195 411 2731
11/09/14 71/09/14 71/09/14 71/09/14 71/09/15 71/11/17 71/11/17 71/12/17 72/03/13 72/03/13	569 510 511 511 512 512 513 513 513 513 513 513 513 513		28383 2095 2741 2741 1997 1138 1138 1137 1137 1177	9316 9316 9366 1468 0 1615 927 781 781 1131 431	11354 1028 1028 1123 1140 1406 1703 4042 5403 12759	132643 132643 13083 2936 1872 2476 763 1918 1918 1918 1918	225; J 12677 12677 12675 2995 2990 2990 2990 8303 8555 17765	1,106,10 1,106,114 1,106,108 1,110,112 1,111,117 1,112,117 1,210,108 12,03,123 12,03,123	2, 2,000002,72,82,82	24.2 11.8 12.2 23.3 36.8 36.8 36.8 36.8 36.8 36.8 36.8 3	60 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1238 685 184 685 184 127 17 137 137 108	3034 985 987 987 323 323 338 162 162 215	551 551 551 551 551 551 551 551 551 551

	DISCHC	ESIDUE	CALCIUM	MCNSIUM	SODIUM	HC03 ION	SULFATE	CHLORIDE	SILICA	FLUORIDE
DATE	Crs	T(M)/DAY	T(M)/DAY	T(M)/DAY	T(M)/DAY	T(M)/DAY	T(M)/DAY	T(M)/DAY	T(M)/DAY	KG/DAY
68/03/13	7950	3074				1538			179	
68/04/03	8990	3146			SS	1760	099	77	213	
68/04/17	8970	3929			19	2041	776	22	161	
90/50/99	22100	6597			93	3894	1731	*	416	
10/90/89	67400	15997			231	12040	3793	165	828	
68/07/10	37200	10559			91	8739	2185	182	428	
90/80/89	13100	4007			80	3696	80	70	103	
68/08/20	11400	4073			3	3320	1032	2 6	153	
68/09/24	10800	4176			8 2	5696	978	23		
11/11/89	8050	2640			7	1970	492	æ	122	
68/12/16	7520	2631			42	1969	1067	81	138	
69/02/12	2020	1646			4	1621	295	25	86	
69/03/18	5340				€,	1699	797	5 8	110	
69/04/22	33500	8443			148	9/49	1312	82	820	
69/05/27	81700	18193				16393	2799	200	1499	
61/80/69	9980	3712			99	3224	611	73	112	
21/00/69	0774	3015			53	2303			9	
69/10/20	9	24.75			3	1890		89		
07/07/69	2250	9962				1580		15		
69/11/20	4170	2010	428	128	77	1593	396	43	88	
76/10/01	904	1857	179	91	. 49	1428	529	0*	72	
70/02/25	4170	1633	;			1367		31		
70/03/24	4670	1771				1486		97		
70/04/27	7870	2311	539	156	67	2003	481	63	173	
70/05/18	38100	4848				6340		186		
70/06/16	35100	8589	2061	\$15	137	7730	1117	129	533	
70/07/14	15300	4942	1911	311	82	4081	674	112	150	11231
70/08/17	6830	2490				1939				
70/09/22	6290	2524				2062	797	ž		9235
70/10/20	88	2088	470	136		1631	408	33		7414
70/11/17	4740	2030				1682				
70/12/15	4100	1565				1284				
71/01/20	6250	2600	296	184		2126	999	· *	144	9176
71/02/24	9240	1920				1600				
71/03/24	4580	1569	392	123		1367				
71/04/20	13400	2886	820	220		3017	623	97		
71/05/26	28000	14476	2839	653		11212				
71/06/22	47200	16401				10972				
71/07/17	25500	7113	1435	412	z	2990	874	106		12480
71/00/12	10800	3753	818	222	3	3171	205	99		13214
71/09/22	2950	2388	210	91	45	1922	999	*		10192
71/10/19	2560	2286	964	3,	67	1823	395	25		12245
71/11/16	2560	2177	476	28.	25	1741	395	45		10684
71/12/07	3700	1684	353	90	*	1249	272	33		9959
72/01/10	3380	1563	339	6	33	1232	256	1		3308
72/02/03	2900	1213	270	8	31	986	185	28		2677
72/03/02	13500	2742	595	162	67	2180	429	\$		9910

ME3-N TOT N

PBOS-DIS P EG/DAY

Table 49.2

PRIOS - D15 D17/DAY
ZIMC ZM.DISS	EG/DAY																	388		98		103	610	•	374			•	•	612		672	;	36	1007	7647	*	25	1905	116	248	7 F
MANCHESE MM.DISS	EG/DAY																	257		539		Ä	Ì	•	0			•	•	•		4371		11354	76.7	•70						
IROM PE.DISS	EG/DAY																	151		38		¥	9,62	ì	374			777	•	3059		672	;	9935	767	679	162	136	ž	181	165	355 1652
LEAD PB.DISS	KC/DAY																	141		530		36.1	746	}	262			c	•	0		22	:	426	•	•	77	•	27	•	.	165
CULDISS	KC/DAY																	385		9		ä	R 5	•	300			:	:	0		•	;	284	5	3 6	• •	*	1	•	•• ;	4 8
ARSENIC AS. DISS	KG/DAY																	3		2		9.	<u>.</u>	•	75		•	- c	•	•		112		0				0		,	0	
	DATE	,	68/03/13	68/04/03	68/02/08	90/90/89	68/07/10	90/80/89	02/00/59	68/11/11	68/12/16	69/02/12	69/03/18	77/10/60	69/02/27	49/00/13	64/10/20	69/11/18	69/12/16	70/01/27	70/02/25	20/07/02	10/07/02	20/06/16	10/01/14	70/08/17	70/09/22	70/10/20	70/12/15	71/01/20	71/02/24	71/03/24	71/04/20	71/05/26	77/00/77	71/04/18	71/09/22	71/10/19	71/11/16	71/12/07	72/01/10	72/03/02
ĮĮ.	EG/DAY		17511	4631	0.1.67	43238	6732	3208	5946	177	11301	5815	45906	31987	10501	900	2664	7091	1697	2449	1600	382	16782	4867	1170	1231	1112	1044	1403	6663	į	11804	58190	68144	193435	9514	2857	35	1449	3970	4187	19160
H OHC	KG/DAY		13199	2195	86498	31860	1609	2511	5286	6993	64 76	2483	22953	1887	9280	198	200	107	368	0	22	• ;	5594	2246	1170	770	124	116	- ½	3 2	}	2905	21289	46199	180956	400	1	3	1268	1654	1632	6607
MO3-N	EC/DAY	2140	1980	220	3 151	6372	160	279	1321	26.80	2580	3267	12296	19992	884	3	7,	692	88	2347	1028		8391	0,47 0,49	0	308	247	280	. Y	2	1121	3279	14193	11550	0	-	•	2986	0	1737	2058	8289
M-0-2	C/DAT		2200	2132	16493	4551	351	279	2 2	3	123	131	9837	11995	3	9 5	9201	642	000	0	•	•	6981	1822	•	0	741	7	102	1120	1233	2623	22708	10395	13104	1010	2721	2585	181	579	497	366

										385		4			*	333		읈				2		0		0		787		62	•	0	*	1	0	•	*	\$
										z		8			19	•		22			•	•		0		112		0					•			•		
17/20/00	68/11/11	91/21/89	69/02/12	69/03/18	69/04/22	69/05/27	69/08/19	69/09/17	69/10/20	69/11/18	69/12/16	70/01/27	70/02/25	70/03/24	70/04/27	70/05/18	70/06/16	70/07/14	70/08/17	70/09/22	70/10/20	70/11/17	70/12/15	71/01/20	71/02/24	71/03/24	71/04/20	71/05/26	71/06/22	71/01/27	71/08/18	71/09/22	71/10/19	71/11/16	71/12/07	72/01/10	72/02/03	72/03/02
7710	8097	10011	5815	45906	31987	10501	7306	1050	2569	1604	1697	2449	1600	385	16782	16319	4867	1170	1231	1112	1044	1405	3029	4641		11804	58190	68144	193435	7156	3058	2857	9156	1449	3970	4187	19160	
2/43	6993	64 76	2483	22953	7997	9280	6461	8	1285	107	388	0	175	•	5594	6871	2246	1170	770	124	116	•	Š	320		2065	21289	46199	180956	7664	1747	136	244	1268	1654	1632	6607	
5	3680	2580	3267	12296	19992	884	99	0	257	749	88	2347	1028	385	8391	7730	749	•	308	247	280	903	1376	304.	1121	3279	14193	11550	0	0	•	•	2986	0	1737	2058	8289	

899 899 100 100 100 1114 1114 1119

64/03/13 64/03/13 64/03/06 64/03/06 64/03/06 64/03/10 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 64/03/13 70/03/13 70/03/13 71/

Table 50. Number of Insects Collected by Bottom Sampling in the Kootenai River 1968-1971

Location	Total o	f All Stations		
No. of Samples	38	60	72	60
Year	1968	1969	1970	1971
Plecoptera				
Pteronarcys	3	9	1	1
Pteronarcella	239	443	457	475
Capnia	37	947	35	
Isocapnia	24	2 1062		
Brachyptera Nemoura	24	26		318
Isogenus	285	1597	569	1112
Arcynopteryx	1	3		8
Isoperla Diura	234	104	749	150
Acroneuria		3	429 30	11
Classenia	1	4	30	45
Alloperla	386	21	1038	1338
Unidentified Ephemeroptera				10
Baetis	270	3163	3613	1027
Callibactis	2, 0	3	3013	1937
Ameletus	2	82		9
Parameletus Eph ome rella	94	81		
Leptophlebia	19	870	246	106
Paraleptophlebia		1		
Heptagenia	7	12	187	148
Rhithrogena Cinygmula	12 3	34	65	756
Epecrus (Iron)	3	13	30	75
Unidentified		2		
Trichoptera				
Hydropsyche Parapsyche	1878 126	2083	6350	4170
Arctopsyche	126	378	113	52
Cheumatopsyche		4		4072
Brachycentridae	134	155	298	178
Glossosoma Rhyacophila	31 1	82		49
Limnephilidae	18	146		
Neothreama	11	240		
Unidentified		1	41	125
Diptera Tendipedidae	3558	0005		
Tipula	55 55	8285 50	10329 54	7360
Holorusia	12	24	15	109
Hexatoma	48	26	75	108
Simulium Tanyderidae	2	19	7	
Rhagionidae		4	6	2
Atherix v.	7	ž	•	14
Empididae Tabanidae	1	2		
Unidentified	18	0.4		1
Odonata	10	94		230
Zygoptera		1		
Agrion Coleoptera		1		
Elmidee	25	••		
Hydrophilus	4.3	11 1		19
Dytiscides Manalantan		ī		
Megoloptera Sialis	_			
Remiptera	1			
Corixidae	64	11		1
TOTAL				1
TOTAL	7622	19869	24737	22989

Table 51. Number of Insects Collected by Bottom Sampling in the Kootenai River 1968-1971

Location		Rexford (sta		
No. of Samples	9	15	18 1970	15 1971
Year	1968	1969	TAKO	19/1
Plecoptera				
Pteronarcys		7		
Pteronarcella	156	157	214	322
Capuis	34	13	6	
Isocaphia	_	001		5
Brachyptera	3	231 10		,
Nemoura Isogenus	115	277	185	431
Arcynopteryx				8
Isoperla	128	5	274	51
Diura			155	_
Acroneuria	•	•	9	8 23
Classonia	1 108	1 10	200	23 205
Alloperla Unidentified	100	10	200	1
Ephemeroptera				_
Bactis	92	893	1433	312
Callibactis		_		
Ameletus	2	8		
Parameletus	50	6 184	82	51
Ephemerella Leptophlebia	30	104	02	7-
Paraleptophlebia				
Heptagenia		1	62	11
Rhithrogena		9	25	94
Cinygmula			1	17
Epecrus (Iron)				
Unidentified Trichoptera				
Hydropsyche	1121	400	1919	2139
Parapsyche	110	69	52	21
Arctopeyche	7			
Cheumatopsyche		4		216
Brachycentridae	48	14	129	67 30
Glossosoma	12	3		30
Rhyacophila Limnephilidae	1	72		
Neothrema	-			
Unidentified			3	3
Diptera				4914
Tendipedidae	635	1817 8	3121 15	1714 25
Tipula Holorusia	31	8	13	23
Hexatona	7	10	21	19
Simulium	•	15	7	
Tenyderidae		_	_	
Rhagionidae	_	2	1	11
Atherix v.	3			11
Empididae Tabanidae				
Unidentified		35		95
Odonata				
Zygoptera		1		
Agrion				
Coleoptera		2		6
Elmidae Hydrophilus		•		•
Dytiscidee		4		
Megoloptera				
Sielis				
Hemiptera				
Corixidae		4		
momat	2664	4280	7916	5885
TOTAL	2004	7544	.,	

Table 52. Number of Insects Collected by Bottom Sampling in the Kootenai River 1968-1971

		2700-27/2		
Location		Warland (St	stion 2)	
No. of Samples	10	15	18	15
Year	1968	1969	1970	1971
Plecopters				
Pteronercys	3			
Pteronarcella	58	87	195	
Capnia	3	623	173	58
Isocapaia		2	•	
Brachyptera		465		87
Memoura				•
Isogenus Arcynopteryx	90	164	235	289
Isoperia	46			
Diura	40	58	211	11
Acroneuria		2	122 19	•
Classenis		ī	17	3 12
Alloperla	67	_	456	452
Unidentified				736
Ephomeroptera Beetis				
Callibertie	17	778	1047	991
Aneletus		47		
Parameletus		60		
Ephamerella	1	258	98	18
Leptophlebia			,,	70
Paraleptophlebia				
Heptagenia Rhithrogena		3	52	129
Cinygoula	3	6	26	317
Epecrus (Iron)	,	6	18	58
Unidentified		•		
Trichopters				
Hydropeyche	261	540	2572	696
Parapayche	6	206	43	6
Arctopsyche	5			•
Chaumatopayche Brachycentridae	24			2437
Glossoscma	27 1	87 8	92	51
Myscophile	î	•		4
Limmephilidae	4	39		
Neothrama		•		
Unidentified				110
Diptera Tendipedidae				
Tipula	1345 14	3036	2801	2131
Holorusia	14	14 4	18	51
Hexatona	32	9	7 17	
Simulium	2	•		57
Tanyderidee				
Rhagionidae Atherix v.		1	1	
Empididee				1
Tabanidae				
Unidentified	1	38		
Odonata	•	30		57
Zygoptera				
Agrion				
Coleoptera Elmidae	•	_		
Hydrophilus	2	5		13
Dytiscidee		2		
Megoloptera		4		
Sielia	1			
Hemiptera	_			
Corixidae	64	7		
TOTAL	2054	4884		
	4V34	6556	8039	8039

Table 53. Number of Insects Collected by Bottom Sampling in the Kootenai River 1968-1971

	•	1700-17/1		
Location	Belo	w Dem (Stat:	ion 3)	
No. of Samples	9	15	18	15
Year	1968	1969	1970	1971
Plecoptera		2		
Pteronarcys Pteronarcella	21	170	4	16
Caphia		207	•	10
Isocapaia				
Brachyptera	7	259		118
Nemoura		16		
Isogenus	62	716	52	208
Arcynopteryx	1 8	3 24	177	86
Isoperla Diura	2	44	95	90
Acronauria	-		,,	
Classonis		2		3
Alloperla	158	8	264	412
Unidentified				
Epheneroptera				
Beetis	106	1247	749	278
Callibactis Ameletus		14		2
Permeletus		15		•
Ephemerella	42	320	40	8
Leptophlebia	19			
Paraleptophlebia		1		
Heptagenia	7	3	28	7
Rhithrogena	12	12	.5	114
Cinygnula		7	10	
Epecrus (Iron) Unidentified		•		
Trichopters				
Rydropsyche	317	972	958	416
Parapsyche	4	87	8	14
Arctopeychs	1			
Cheumatopsyche	**	51	40	843
Brachycentrides Glossosoma	52 18	68	43	43 12
Rhyscophila	20	00		
Limmephilidae	11	32		
Neothrenna	8			
Unidentified			22	
Diptera	94.6	1602	1963	1878
Tendipedidae Tipula	246 6	17	1903	16
Holorusia	7	4	8	10
Hexatons	ģ	Š	25	16
Simulium		1		
Tenyderidae		<u>.</u>	_	1
Rhagionidae	_	1	2	-
Atherix v.	3 1	2 2		1
Empididae Tabanidae	•	4		
Unidentified	17	16		26
Odonata				
Zygoptera		_		
Agrion		1		
Coleoptera	A	4		
Einidee Vederahiine	9	4		
Hydrophilus Dytiscidas		•		
Megoloptera				
Sielis				
Hemiptera				_
Corixidae				1
G0041	1154	5890	4466	4519
TOTAL	1427	J47V	7-7V V	7,54,7

Table 54. Number of Insects Collected by Bottom Sampling in the Kootenai River 1968-1971

Location	10	Lowry Gulch		
No. of Samples Year	1968	15 1969	18 1970	15 1971
21 acceptants				
Plecoptera Pteronarcys				1
Pteronarcella	4	29	44	79
Cepnia Isocapnia		104	20	
Brachyptera	14	107		108
Nemoura	18	440		
Isogenus Arcynopteryx	10	440	97	184
Isoperla	52	17	87	2
Diura Acroneuria		1	57	
Classenia				7
Alloperia	53	3	118	269
Unidentified Ephemeroptera				9
Bastis	55	245	384	356
Callibaetis Ameletus		3 13		7
Parameletus		13		•
Ephenerella	1	108	26	29
Leptophlebia Paraleptophlebia				
Heptagenia		5	45	1
Rhithrogena Cinygmula		7	7	231
Epecrus (Iron)			•	
Unidentified Trichoptera		2		
Hydropsyche	179	171	901	919
Parapayche	6	16	10	11
Arctopsyche Cheumstopsyche				576
Brachycentridae	7	3	34	17
Glossosoma Throspoldia		3		3
Rhyacophila Limnephilidae	2	3		
Neothrama	3		••	
Unidentified Diptera		1	16	12
Tendipedidae	1332	1830	2444	1637
Tipula Holorusia	4 5	11 8	11	17
Hexatoma	•	4	12	16
Simulium Toomdonidoo		3		•
Tanyderidae Khagionidae			2	1
Atherix v.	1			1
Empididae Tabanidae				1
Unidentified		5		52
Odonata Zygoptera				
Agrion				
Coleoptera Rimidae	14			
Hydrophilus				
Dytiscides Maccionters		1		
Megoloptera Sialie				
Hemipters				
Corizidas				
TOTAL	1750	3143	4316	4546

		LINEY DAM PROJECT					LIBST DAM PROJECT		
Table 55. Masher and Kootenad	Number and Weight of Insect Kootemai hiver 1968-1971.	sects Collected 1.	s Collected by Bottom Sampling in the	pling in the	Table 56. Number and Weight of Insects Collected by Botton Sampling in the Kootenai River 1968-1971.	Number and Weight of Inse Kootenai River 1968-1971.	<pre>bcts Collected .</pre>	by Bottom Sem	pling in the
	•	Total of all stations	tations		Locations		Maxford (Station 1)	tion 1)	
No. of Samples	25	3	72	9	No. of Samples	•	23	81	27
Year	1968	1969	1970	1971	Year	1968	1969	1970	1971
Placoptera Member Beight	1212	4221 26.81	3308 80.91	3468	Placoptera Namber Weight	\$45 10.75	711	1043 31.59	1054 32.52
Sphesotoptere Manber Weight	407	4261	4141	3031	Ephemeroptera Number Weight	144	1101 2.89	1605	485 3.70
Trichoptera Masber Weight	2212 31.15	2849 29.02	6802 102.07	8646	Trichoptera Number Weight	1299	562 6.77	2103 32.38	2476 59.10
Diptora Number Volght	3701 14.05	8506 20.46	10486	7824	Diptera Member Weight	676	1895	3165	1864
Odozata Rusbor Volght		0.12			Odonata Rumber Wedght		0.12		
Coleopters Rusher Veight	25	19		51 51	Coleoptera Number Weight		90.0		e ii
Megalopters Mesher Meight	- H				Negalopkera Nember Weight				
Bendpters Benber Beight	1.22	11		- !	Hemiptera Fumber Veight		4 #		
TOTAL. Market Weight	7622 68.27	19869 90.93	24737 227.11	22989 326.96	TOTAL Number Waight	2664 27.62	4280 21.69	7916 76.67	5 68 5 105.25

	ŀ
;	
•	

Table 57. Number and Weight of Insects Kootenal Miver 1968-1971.	Number and Weight of Insec Kootenai Miver 1966-1971,		Collected by Bottom Sampling in the	ing in the	Table 58 Number and We Kootenai Rive	ight of Insect r 1968–1971,	Number and Weight of Insects Collected by Bottom Sampling in the Kootenai River 1968-1971.	Bottom Sampli	ng in che
Location:	2	Warland (Station 2)	1 2)		Location:	Below	Below Dam (Station 3)	•	
No. of Samples	01	21	81	15	No. of Samples	•	23	18	15
Test	1968	1969	1970	1971	Mer	1968	1969	1970	1971
Plecoy tora Puber Velek	267 6.18	1042 6.86	1247 32.03	912 16.85	Plecoptere Number Weight	259 1.98	1407	595 6.63	843 14.30
Rhemeropiera Mender Weight	0.30 0.30	1158	1241	1513	Sphameroptera Number Weight	186 0.70	1619 5.64	832 2.68	409
Trichoptera Benber Weight	305 7.24	880 8.95	2707	3304 72.00	Trichoptera Number Weight	411	1210 10.16	1031 15.90	1328 27.15
Diptera Member Weight	1394	3102 5.57	2844	2297 17.90	Diptera Number Weight	289	1648 5.30	2008 6.51	1938 8.83
Odonata Number Weight					Odonata Number Weight		- 1		
Coloopters Number Weight	۲ ۲	0.03		នង	Coleoptera Number Weight	6.01	5		
Manipe Care Manipe Verigie	- H				Negaloptera Nember Weight				
Bandptores Bandptores Wedge	1.22	۲ تا			Healptera Number Weight				٦ ٢
TOTAL Member Weight	2054 23.22	6556	8039 84.25	8039 113.60	TOTAL Number Weight	1154	5890 30.47	4466 31.72	4519 52.53

Table 59 Number and Kootenal	Number and Weight of Insects Kookenal River 1968-1971.		Collected by Bottom Sampling in the	pling in the	Table 60 Number and Weight of Insects Per Square Meter Collected by Bottom Sampling in the Kootenai hiver, 1968-1971.	Weight of Insec ling in the Koo	ts Per Square) tenai hiver, 19	Meter Collecte 968-1971.	d by
Location:	ĸ	Lowry Gulch (Sta	(Station 4)		Location	Total of	Total of all stations		
No. of Samples	10	15	18	15	Year	1968	1969	1970	1971
Year	1968	1969	1970	161					
Plecontera					100/m²	343	757 4.8	495	622 13.8
Rember	141	701	423	659					
	ξ. :	66.5	99.07	75:57	Ephemeroptera	115	764	619	35.
Ephemeroptera	;	į	;	į	1	7. 0	2.6	2.2	2.9
Weight	56	383 0.48	463	624 3.61					
,)	3	3		5	Trichoptera no/m2	627	iis	1017	1551
Trichoptera	;	į	į	•		•	2.6	13.3	33.6
Weight	197	197	961	1538					
•	2			01.61	Dipters no/m²	1048	1526	1568	1404
Diptera					7-1-5	4.0	3.7	4.4	
Mund or	1342	1361	2469	1725					
Weight	2.53	4.32	7.15	9.55	Odonata				
Odonata					10 m				
Mumber									
Weight					Coleoptera	i			•
Colembers					*/* */*	~ #	ם כ		m H
Musber	14	1							
Weight	10.0	Ħ			Megaloptera no/m²	7	e		
Negaloptera Staber					*/ */	ä	Ħ		
Weight					Hemiptora				
,					20/m2	18 0.3	7 7		5 5
Maber									
Velght					Total no/m²	2159	3565	3698	4124
TOTAL					Į.	19.3	16.3	0. #	7.
Musber Veight	1750 5.62	3143 12.43	4316	4546					

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

LIBBY DAN PROTECT

Table 61 Number and Weight of Imsects Per Square Meter Collected by Bottom Sampling in the Kootemai River, 1968-1971. Location Rexford (Station 1) Year 1968 1969 1970 Plecopters 652 510 624 gm/m² 13.0 4.7 18.9 Ephemetropters 10.5 2.1 1.7	Mumber and Weight of Insects Per Square Meter Col Bottom Sampling in the Kootenai River, 1968–1971. Rexford (Station 1) 1968 1969 1970 a. 652 510 624 13.0 4.7 18.9	tta Per Square Meter Stenai River, 1968-13 Rexford (Station 1) 1969 1 510 510 4.7 1	Meter Collect 1968-1971. 10m l) 1970 624 18.9 18.9	ed by 1971 756 23.3 348 2.7	Table 62 Number and Weight of Insects Per Square Mater Collected by Bottom Sampling in the Knotenai River, 1968-1971. Location Warr 1968 1969 1970 Placoppers 1968 1969 1972 Bala 1968 1968 1968 968 Bala 1968 1968 1968 1968 1968 1968 1968 1968	Weight of Inse pling in the Ko 1968 287 6.7 0.5	cts Per Square Mater otenai River, 1968-19 Warlend (Station 2) 1969 1 1006 4.9 11	Mater Collect 1968-1971. 1970 1970 19.2 19.2 2.5	654 1971 12.1 1006 1.96
Trichoptera no/m 2 gm/m 2	1254	403 4.9	1258	1777	Trichogtera no/m2 gm/m	328	632 6.4	1619 23.9	2371
Napters no/s 2 gn/s 2	809 2.0	1360 3.8	1893	1338	Distant no/m gm/m	1501	2226 4.0	1701	1648
Odonata no/a 2 ga/a 2		0.1			Odomatą Dalou ga/as				
Coleoptara no/a ⁷ gm/n ²		4 H		4 H	Coleopjera no/w ps/w²	~ H	٠ <u>١</u>		• #
Mealogeers no/n ² gn/n ²					Magalogtera no/m² na/m² na/m²	in g			
Marting 2 20/12 2 20/2 2		e H			React pt.gr. a.	\$5	s, H		
Total 2 no/n 2 m/n 2	3225 33.0	3071 15.6	4734	4223 75.5	10tal 20/e2 20/e2	2211	19.9	26.4 30.4	57 69 61.5

Table 63 Number and Weight of Insects Per Square Meter Collected by Bottom Sampling in the Kootemai River, 1968-1971.	ht of Insects ; in the Kotem	Per Square Meto ai River, 1968-	rr Collected b	ħ.	Table 64 Wimber and Weigh Weton Sampling	t of Innec in the Koc	ts Per Sque tenai River	Number and Weight of Insects Fer Square Nater Collected by Bettom Sampling in the Kootenal River, 1968-1971.	ką pi
Location	Below	Below Dem (Station 3	•		Loesefon	3	Lowry Galch (Station 4)	(Station 4)	
Year	1968	1969	1970	1971	76 m	1968	1969	1970	1971
Pleconters 20/3-2	310	1009	356 3.8	605	Plecopyers no/s ga/s	152	503	253	473 9.6
Phonografters no/n 2 no/n 2	201 0.8	1162	498 1.6	294 1.6	10/4 10/4 10/4	0.2	275	277	448 2.6
Trichogers no/n 2 ga/n 2	492 9.0	7.3	616 9.5	953 19.5	Trichoptera no/my gm/m	212	141	575 6.2	1104
Diptora, mo/m 2 m/m 2	35. 9.1	1183 3.8	1201 3.9	1391 6.3	Diptorp no/n2 m/m2	2.7	1335	1476	1236
		- 11			Odonata no/m² gm/m²				
05 con 6 con	# #	₹ ‡			Coleoppera no/a2 ga/a2	ងដ	- H		
					Manalogera 100/m2 gm/m2				
				H	Small core no/n2 gm/n2				
# # # # # # # # # # # # # # # # # # #	1390	4227	2671 19.0	37.7	Total 2 no/m2 marks 2 marks 2	1884	2255 8.9	2561	3262

LIMIT DAM PROJECT

												19917	LOSCOLL MAN TRACL				
Table: 65 Number of Insects Callected by Cylindrical Substrate Sampler in the Kestenai River in 1968 and 1969.	in the state of th	r te o	billacted 1 968 and 15	by Cylin 169.	drical S _t	betrate !	aler 1	n the	Table 66 Total Bu	mber and	Weight of Mor in 1	Insects C 968 and 19	ollected b	y Cylindri	Total Number and Weight of Insects Collected by Cylindrical Substrate Sampler in the Kootemai River in 1968 and 1969.	te Sample:	
Location		Marford		겉	7	Pelow Da	Total	4	Location:		Renford	Wer	Warland	Jelov	_	Total	4
D. of Saples	196	1969	1968	1969	1968	1969	23 19 68	27 1969	No. of Samples Year	1968	9 1969	1968	9 1969	9 1968	9 1969	23 1968	27 1969
Pleceptors									Plecopters Masber	*	£	116	1166	349	1117	812	2826
Pterenercella	ă.	236	7.8	372	129	158	289	186	Weight	8.73	3.32	2.66	7.74	7.97	6.33	19.36	17.39
9	> ~	=		Π	1	12	11	*	Ephaneroptera								
Brackyptora	\$	2	2	228	77	3 -	92	8	Maber	3 6	535	177	1130	163	1664	384	3329
	124	225	78	519	109	, 69	259	1213		;	}	;	3		3	•	
Lecynoptorys Income to	8	₽ ~	.	28	1 22	13	<u>Ş</u>	2 3	Trichoptera Number	539	862	105	828	2697	06290	1414	02.70
Lerenaur la	,	•		}	,	}	}	, m	Weight	14.51	7.89	2.49	13.16	100.63		117.69	52.74
Classes is Alloperia	- 8	~	8	••	57	394	111	\$	Diptera								
Rebenseroptors Receie	\$	410	1	3	133	1151	275	200	Monber Vetebt	287	511 1.91	216	1146 3.29	573	1267	1076	2924
Amelacus	}	7	•		}	2	}	23		!	!	3	ì			}	
Spenoralla Topostickie	∽ -	711	2	471	2 -	\$	107	1073	Odonata Mumber						•		•
Mithrogen	•	•		•	•	8	•	° =	Weight						6.03		0.03
Cinymela				^		m		2	Colsonters								
Patronerche	#	576			5016		5479	6744	Manber		-		~		9		6
Parapayche	5	137	2		225		313	1826	Weight		#		t		0.14		0.14
Chemetopeyche	2 5	,	•	# 3	2		8	2	Meeslonters								
Closcoms	0	27	•	3 %	7	§ 2		102	Number		-						-
Myscophile		•		25				61	Weight		Ħ						Ħ
Pochrone		ò		3	25	3	25	740	Hemiptera								
Diptera	ļ	,			! !		1		Number								
Tendipodidos	7 68	454	190	1073	\$\$ \$	974 ,	913	2501	weignt								
Poloresta		•	. ~	•		1,	22	22	Total								
Personal Startifica	2	5	7	ئ د	# £	2 %	83	2 5	Musber Weight	1217	2453	614 6.30	5422 25.05	6782	6782 10446 113.90 44.32	8613	18321
Atherts v.	}	•	i	; •	}		2	3-5	•								
Ofenets		r		r		•		3									
Colombas						8		8									
Theidee		-		~		7		•									
Syciocides Syciocides				-				M W									
Masleptera Stalls		-						-									
TOTAL	1217	2453	919	5422	6782	10446	8613	8613 18321									

LIBBY DAM PROJECT

Table 67 Average Number and Weight of Insects Collected by Cylindrical Substrate in the Kootenai River in 1968 and 1969.

Location:	Rex	ford	War	land	Below	Dam	To	tal
No. of Samples	9	9	5	9	9	9	23	27
Year	1968	1969	1968	1969	1968	1969	1968	1969
Plecoptera								
Number/sample	39	60	23	130	39	124	35	105
Weight/sample	1.0	0.4	0.5	0.9	0.9	0.7	0.8	0.6
Ephemeroptera								
Number/sample	5	59	35	126	18	185.	17	123
Weight/sample	tr	0.2	tr	0.1	0.1	0.4	tr	0.2
Trichoptera								
Number/sample	60	96	21	220	633	710	276	342
Weight/sample	1.6	0.9	0.6	1.5	11.2	3.5	5.1	2.0
Diptera								
Number/sample	32	57	43	127	64	141	47	108
Weight/sample	tr	0.2	0,2	0.4	0.5	0.3	0.3	0.3
Odonata								
Number/sample						tr		tr
Weight/sample						tr		tr
Coleoptera								
Number/sample		tr		tr		1		tr
Weight/sample		tr		tr		tr		tr
Megaloptera								
Number/sample		tr						tr
Weight/Sample		tr						tr
Hemiptera								
Number/sample								
Weight/sample								
Total								
Number/semple	135	273	123	602	754	1161	374	679
Weight/sample	2.6	1.7	1.3	2.8	12.7	4.9	6.3	3.1

Note: Totals may not add due to rounding.

\$ U.S. GOVERNMENT PRINTING OFFICE: 1982--600-227--249

